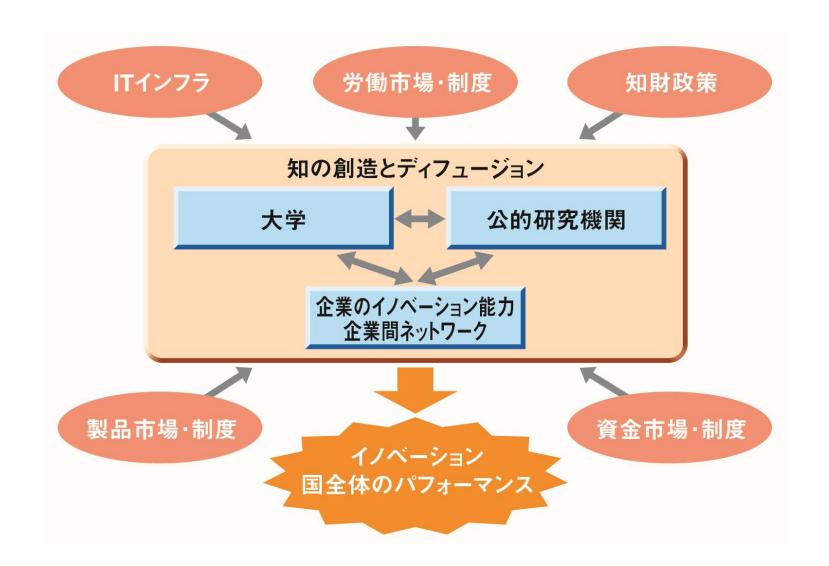

発表2

書誌情報と統計データの統合によるイノベーションプロセスの解明

2015年12月8日 第8回政策研究レビューセミナー

文部科学省科学技術・学術政策研究所 第1研究グループ 客員総括主任研究官 元橋 一之

アジェンダ


1. イノベーションプロセス分析の必要性

2. 企業情報の接続・分析

- 3. 全国イノベーション調査
- 4. 著者・発明者情報の接続・分析

イノベーションプロセス分析の必要性

ナショナルイノベーションシステムのコンセプト

サイエンス経済時代のイノベーション

21世紀:サイエンス革命の はじまり(インターネット、 バイオ、ナノテク...)

工業経済時代	サイエンス経済時代
プロダクト+プロセス	サイエンス+ビジネス
技術プッシュor市場プル	ビジネスモデル設計(価値デザイン)
(技術に裏付けされた)モノづくり	(サイエンスに裏付けられた)コトづくり
自前主義(自主開発)	オープンイノベーション サイエンスイノベーション:産学連携 ビジネスイノベーション:顧客(企業)との協業

科学技術政策とイノベーション政策の連携(CSTI)、国研・大学改革、オープンイノベーション推進等

エビデンスベースの政策のためのデータ基盤を整備

サイエ ンス インダ ストリー

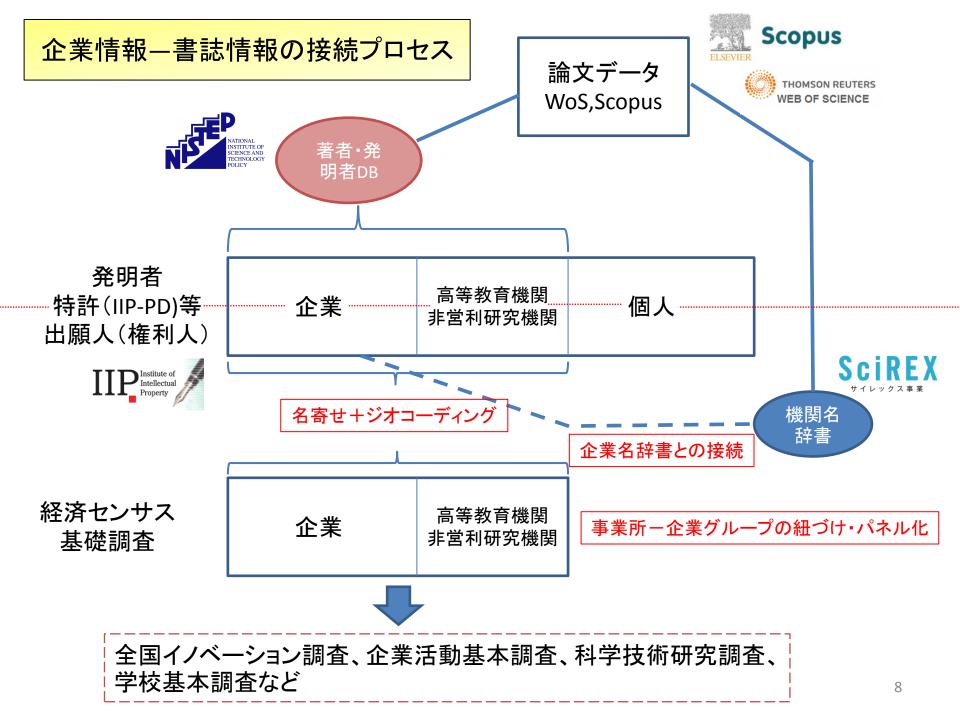
学校基本調查 科学技術研究調查(大 学、研究機関) 科学技術研究調査(企 業)

経済センサス

全国イノベーション調査

企業単位(マクロ)

論文データベース (WoS,Scopus,CiNii)


特許、意匠、商標データベース

個人、発明者 単位 (ミクロ)

相互接続によってサイエンスーインダストリーのイノベーションプロセスを解明

企業情報の接続・分析

名寄せとは?

表記ゆれの事例

松下電器産業 パナソニック株式会社 パナソニック(株) Panasonic(株)

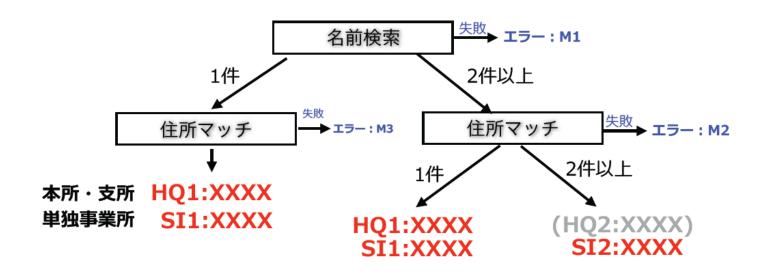
> 企業名の変更 英語と日本語の混在 入力ミス

企業名辞書の整備

<u>同名企業の事例</u>

石崎商店(熊本県/産廃処理) 石崎商店(新潟県/酒店) 石崎商店(北海道/食品加工) 石崎商店(愛媛県/医薬品卸)

同一名称の企業の存在


住所情報の活用 その他書誌情報を用いた確率論的同定

経済センサス(事業所企業統計) 事業所数

		民営		公営
調査年度	調査期日	企業数	事業所数	事業所数
2001	2001/10/1	4,952,383	6,138,312	211,789
2004	2004/6/1	4,586,598	5,728,492	_
2006	2006/10/1	4,466,732	5,722,559	188,474
2009	2009/7/1	4,511,004	5,886,193	157,101
2012	2012/2/1	4,472,068	5,768,489	_

特許・経済センサスの接続

[センサス1調査年] 1特許出願 vs. 全ての事業所

XXXXには住所文字列の一致レベルコードが入る

FULL: 完全一致 DIST: 地名一致

CITY: 市区町村一致 PREF: 都道府県名一致

経済センサス(事業所企業)との接続事例

- 2001&2006事業所企業 + IIP-PD (2009.9 updated version)
- 名称正規化+場所(市町村区レベル)、企業名寄せが可能
- 分析テーマ:イノベーションと企業のサバイバル分析、オープンイノベーションとの関係、イノベーションの地理的特性(クラスター政策の評価)、発明者のモビリティに関する研究

	2001	2006
# of firms	5,015,415	4,562,890
with patent	66,852	64,640
% with patent	1.33%	1.42%
# of patent	6,202,304	5,752,461
% of coverage	62.86%	58.30%

Motohashi, Kazuyuki (2012) "Open Innovation and Firm's Survival: An empirical investigation by using a linked dataset of patent and enterprise census," RIETI Discussion Paper Series 12–E–036.

全国イノベーション調査

全国イノベーション調査について

- ■民間企業のイノベーションに関する情報を収集するための政府 統計(一般統計調査)
- ■国際的な基準(オスロ・マニュアル)に準拠した統計調査
 - ▶オスロ・マニュアルとは、イノベーションに関するデータの収集と解釈のためのガイドライン。最新の第3版(2005年)はOECDとEurostatが共同で作成。
 - ▶EU加盟国等では調査実施が義務化。共通の調査方法と調査事項によるイノベーション調査(CIS: Community Innovation Survey)を2年周期で実施。

■主な調査項目

(技術イノベーション)

- プロダクト・イノベーション:新製品、サービス
- プロセス・イノベーション: 生産工程・配送方法・それらを支援する活動

(非技術イノベーション)

- 組織イノベーション:業務慣行、職場編成、対外関係に関する方法
- マーケティング・イノベーション:製品・サービスのデザインの変更、販促・価格 設定方法、販路

全国イノベーション調査の対象範囲

技術イノベーション

非技術イノベーション

全国イノベーション調査

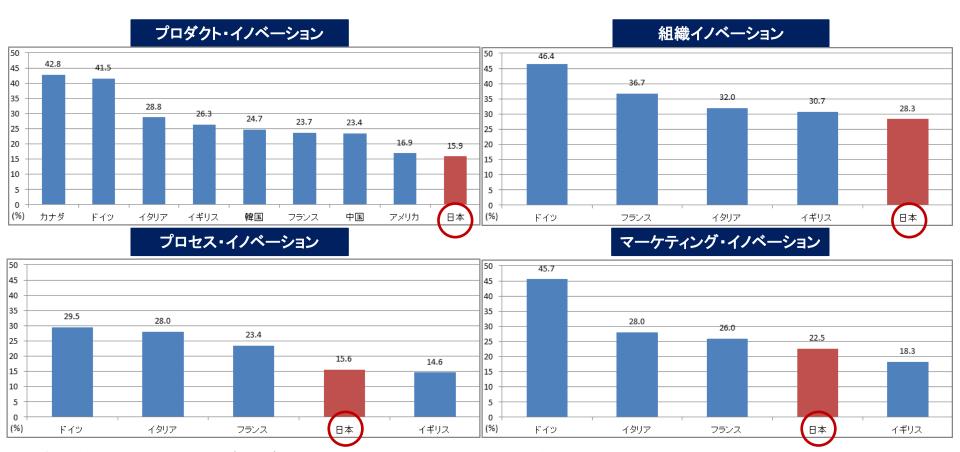
特許データ (IIP-PD)

R&Dデータ (科調統計、 民研調査*)

- 製造業中心
- R&Dは大企業に集中

意匠・商標 データ (NISTEP)

非製造業のイノベーションもカバー (インターネットバンキング、コンビニの サプライチェーンシステム)

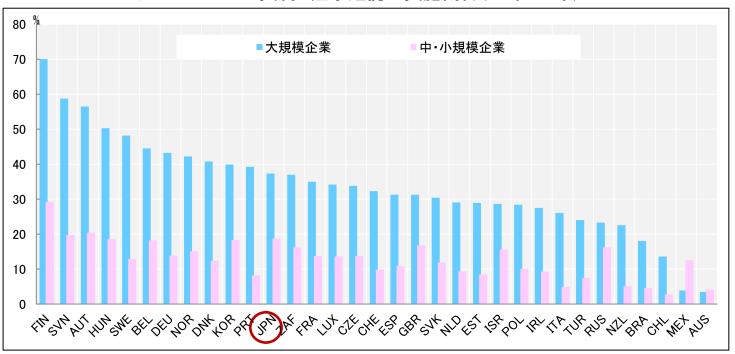

<u>企業として</u>はじめての取り組みもイノベーション (イノベーションの波及をカバー)

全国イノベーション調査の沿革

	第1回調査	第2回調査	第3回調査	第4回調査
調査実施時期	2003年1月	2009年7月	2013年1月	2015年10月
調査対象年度	1999-2001	2006-2008	2009-2011	2012-2014
対象企業の規模	常用雇用者 10人以上	常用雇用者 10人以上	常用雇用者 10人以上	常用雇用者 10人以上
対象企業の業種	農林水産業, 鉱業, 製造業, 一部の サービス業	農林水産業,鉱業, 製造業,建設業,一 部のサービス業	農林水産業,鉱業, 製造業,建設業,一 部のサービス業	農林水産業,鉱業, 製造業,建設業,一 部のサービス業
母集団	216,585 社	331,037社	412,753社	380,226社
調査対象企業	43,174社	15,137社	20,191社	24,825社
回収率	21.4%	30.3%	35.2%	(TBA)
プロダクト・イノベーション	20%	29%	20%	(ТВА)
オスロ・マニュアル	Rev.2	Rev.3	Rev.3	Rev.3
準拠するCIS(欧州各国のイノベーション調査)	CIS 3 (200/2001)	CIS 2008	CIS 2010	CIS 2014
国際比較	OECD (2003) Innovation in Firms	NISTEP ディスカッ ションペーパー 68	OECD STI Scoreboard 2013	(TBA)

イノベーションの実現に関する国際比較

日本のイノベーション実現割合は諸外国に比べて低い状況にある。

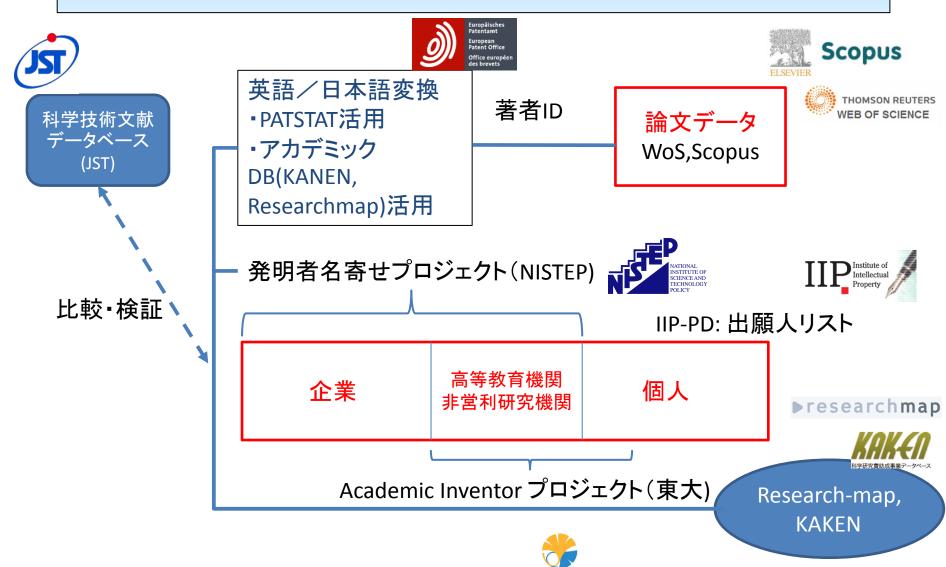


※比較対象国は、アメリカ、カナダ、イギリス、フランス、ドイツ、イタリア、中国、韓国のうち、OECD STI Scoreboard 2013または Eurostat databaseにて値が公表されている国のみとした(ここから先のスライドも同様)。

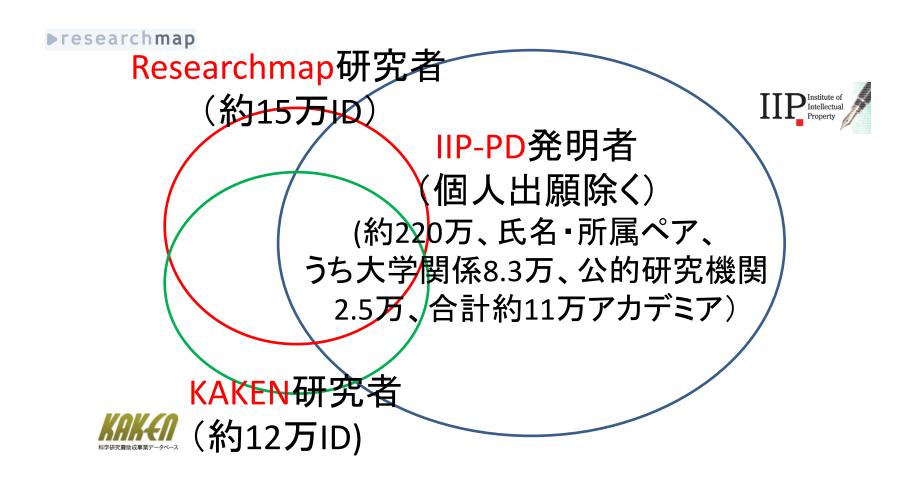
イノベーションに関する大学との連携企業割合

日本のイノベーションシステムにおける産学連携と中小企業の位置づけ(Motohashi, 2005)

イノベーションの実現と産学連携の実施割合(08年-10年)


出所: OECD Science, Technology and Industry Scoreboard 2013.

注: 数値はプロダクトもしくはプロセス・イノベーションを実現した企業の中で、大学等と連携した企業の割合を示す。数値は母集団推計。中・小規模企業は常用雇用者10から250人の企業である。(日本のデータは第3回全国イノベーション調査による。)

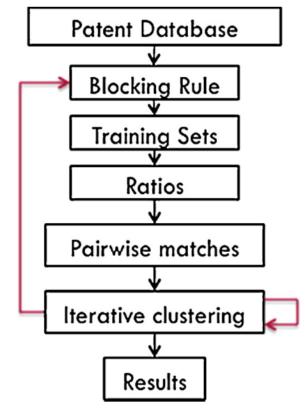

Motohashi, Kazuyuki (2005) "University-industry collaborations in Japan: the role of new technology-based firms in transforming the National Innovation System," Research Policy 34, 583-594.

書誌情報の接続・分析

著者・発明者データベースの作業方針

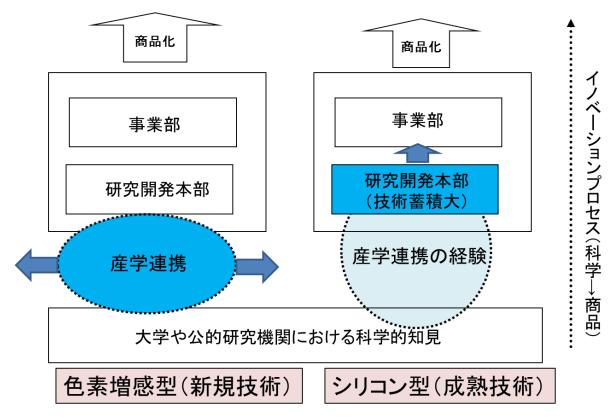
Academic Inventorプロジェクト(東大)

発明者名寄せプロジェクト(NISTEP) Lee Flemingグループ手法の活用


Dr. Lee Fleming, a prof. of CITRIS at UC Berkeley

同一の発明者による特許を確率論的に識別するアルゴリズム

- 発明者の名前と住所のみでなく、共同発明者や出願人、特許 分類などの情報を活用
- 氏名の表記ゆれと同姓同名問題を同時に解決


名寄せのプロセス

(Li et al., 2014, Figure 3)

特許データの発明情報を用いた分析事例

- 太陽電池セルに関する研究成果・特許データを使った産学連携に関する インパクト分析
- 技術ライフサイクルの違い(シリコン型と色素増感型の比較)によって、科学的知見(大学)の企業内波及プロセスを研究

Tomozawa, Takanori and Motohashi, Kazuyuki (2014) "Differences in Science Based Innovation by Technology Life Cycles: The case of solar cell technology," RIETI Discussion Paper Series 14-E-005.

現状と今後の展開

現状

- 商標・意匠データベースの作成(特許、IIP-PDに加えて)
- 住所のジオコーディング手法の確立
- 事業所企業、経済センサスデータのパネル化、特許出願人との接続手法の確立
- アカデミックインベンターの抽出

今後の展開

- 発明者名寄せプログラムの作成、実行
- ・ 論文データとの接続
- データベースの第1次バージョン作成(今年度末めど)
- 出来上がったものから順次データベースのリリース(NISTEP 政策のための科学:データ・情報基盤)