Neuchatel
Transformation from Watch Industry to MEMS-based Cluster
Role of Universities

Nico F. de Rooij
Sensors, Actuators and Microsystems Laboratory
Institute of Microtechnology
University of Neuchatel, Switzerland
EPFL-STI-IMM
www-samlab.unine.ch
Outline

• Introduction
• Consumer Products (watches)
• Microfluidic Dispensing Systems
• Chemical Sensors
• Tools for Nanoscience
• Optical MEMS
• Power MEMS
• Concluding remarks
University Role/Mission

- **Education**
 - Bachelor, Master, PhD Program

- **Conduct Fundamental and/or Applied Research**

- **Applied Research**
 - University/Industry Collaboration
 - “Successful” Research : Technology Transfer
 - Independent Research
 - “Successful” Research : Technology Transfer
 - Start-up Companies
 - Intellectual Property Right (IPR)
 - Incubators (NEODE)
Institute of Microtechnology
University of Neuchatel (IMT UniNE)

- IMT UniNE started its activities in 1975

- The Jurassic Arc was in an economic crisis, due to massive job losses in the mechanical watch industry (arrival of the quartz watch)

- IMT UniNE’s original mission:
 - Education
 - Applied Research
 - Support Local Industry
Regional Network in MNT

Joint efforts for education and research in the fields of Micro- and Nanotechnology (MNT)

Goal: Benefit from the complementary strengths of the members
<table>
<thead>
<tr>
<th>Education</th>
<th>Applied Research</th>
<th>Industrialization Technology Transfer</th>
<th>Product Development</th>
<th>Production & Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMT-UNiNE;EPFL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complementary missions in MNT
Mission of the “Pôle”

• Collaboration in educational programmes
• Dual appointments for selected key people
• Establishment of joint research programs
• Co-ordination of investments in laboratory equipment
• Joint research laboratories: CMI and ComLab
• Joint industry cont(r)acts
Global Watch Business

For 2002 / Source: www.fhs.ch

- **Watches, movements and components (globally):**
 - 1.5 Billion pieces / year
 - 16 to 17 Billion CHF
 \[1 \text{ CHF} \approx € 0.64; \ 1 \text{ CHF} \approx \text{US$ } 0.80 ; \ 1 \text{ CHF} \approx ¥87 \]

- **Switzerland:**
 - 120 Mio. watches, movements and components
 - 28 Mio. finished watches = 10.5 Billion CHF
 - Average export price: 362 CHF
 \[\text{(J: 30 CHF / HK: 7CHF)} \]

- **Global Production of finished watches:**

\[\text{Quantity} \]

- China + Hong-Kong: 81%
- Japan: 13%
- CH: 4%
- Others: 2%

\[\text{Value} \]

- 56%
- 33%
- 6%
- 5%

\[\text{China + Hong-Kong} \quad \text{Japan} \quad \text{CH} \quad \text{Others} \]
Swiss Export of Finished Watches

For 2002 / Source: www.fhs.ch

Pieces (in Mio.)

- Mechanical
- Quartz anal.
- Quartz digit.

Value (in Mio. CHF)

- Mechanical
- Quartz anal.
- Quartz digit.
Altimeter/Barometer Module

Process features:

- Implanted piezoresistors
- Precise electrochemical etch stop
- Anodic Bonding
Altimeter/Barometer Module

- Altitude variation of 1 m:
 - ~0.1 mbar ≡ ~150 pm

- Resolution:
 - ~3µbar ≡ ~3cm altitude variation

- Sensor power consumption:
 - ~1.3µW
Tissot T-Touch (Tactile Crystal)

- User interface by tactile capacitive touch screen
- Altimeter
- Weather forecast
- Temperature (with US/EU Units)
- Compass, chrono, alarm

www.asulab.ch
Mechanical Watches

www.tagheuer.com
UV-LIGA (SU-8)

Why Single Crystal Silicon?

• Well-known and controlled properties

• Low density (2.33), amagnetic, electrical conductor, easy to overcoat, …

• Machining by Deep Reactive Ion Etching (DRIE).
Elastic behavior of Silicon
Silicon Structures of Watch Components

- Machining of complex mechanisms with sharp edges
- Reduced friction
- Higher lifetime
Dual Wheel Escapement with Si-Wheels
Dual Wheel Escapement with Si-Wheels

- Complex silicon wheels with stopper teeth
- Reduced friction
- Reduced moment of inertia
MST based instruments

Spin-off Activities:
μfluidics
chemical sensors
lab-on-chip
Life Sciences: Space Bioreactor

Built to evaluate the growth characteristics of yeast cells in microgravity
Working principle

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml

control electronics

pH control

sensors (pH, T, redox)

flow sensor

micropump

fresh medium
100 ml

3 ml reactor chamber

output valve

stirrer

Used medium

Used medium

100 ml
Flow Sensor

- dual piezo-resistive low pressure sensor
- 4.75 x 9.5 x 1 mm³
- 5 mL/h full scale
- accuracy ~ 2%
Dispensing Systems

Advantages:
- **Control of the liquid quantity at the dispensing site.**
- **Direct, real time measurement of the aspirated or dispensed volume.**
- **Status/diagnostic of the system functionality (clogging, etc.).**
Sensor Controlled Liquid Handling

Drug Discovery, medical diagnostics

- Liquid sample transfer from nL to µL
- Dispenser footprint fits standard industry format
- Modular assembly 8 to 96 channels
Working principle

- Control electronics
- Flow sensor
- Micropump
- Fresh medium (100 ml)
- 3 ml reactor chamber
- Stirrer
- pH control
- Sensors (pH, T, redox)
- Output valve
- Used medium
single sensors
pH-ISFET

multiple sensors
(pH, ORP, Conductivity, T)

ThermoOrion
Dynamic FLASH Titration Process (1)

Acidity Titration

\[\text{H}_2\text{O} - 2e \rightarrow 2\text{H}^+ + \frac{1}{2} \text{O}_2 \]

Platinum Generating Electrodes

1mm

ISFET

2H\text{O} + 2e^- \rightarrow 2\text{OH}^- + \text{H}_2

ThermoOrion Flash Titrator
Nanotools
Phoenix mission to Mars: 2007
AFM on MARS
Tuning Fork based AFM Probes

New probe concept
Tuning fork + Cantilever

1.5 inch square wafer
about 350 tuning forks

Conventional setup
Batch fabrication of the probe

(a) (b) (c)

SiN cantilever
\(k = 0.01 - 1 \, \text{N/m} \)

Si cantilever
\(k = 1 - 550 \, \text{N/m} \)

Length = 125 – 700 \(\mu \text{m} \)
The A-Probe (The Akiyama Probe)

1. Technology Transfer initiated
Optical MEMS
MEMS for Fiber Communication

Optical MEMS

- Size of Single Mode Fibers
- Integrated Passive Alignment
- Low Polarization Sensitivity
- Low Cross-talk
- Reliable
Actuator, Grooves, Mirror

Magn 126x IMT Prof. de Rooij - Fiber Switch

200 µm
Switch Details

µ-mirror:
- Silicon
- 75 - 100 µm high
- ≤ 1 µm thick
- metal coated
- optically flat
Latching Multimode Fiber 2x2 Switch

μ-mirror:
- 100 µm high
- ≤ 1 µm thick
- Gold coated
Latch on Multimode Switch

92 V

52 V
Power MEMS using Solid Propellant Based Actuators
Microthrusters for Nanosatellites/Picosatellites

http://www.aero.org/technology/etd.html
Solid Propellant Technology

• **Combustion**: large quantity of energy from small volume

• **Solid fuel**: no leakage, stability in time

• **No moving parts**, eliminating frictional force and making technological fabrication easier

• **The chamber is not pressurised**, the reservoir does not need to be massive
Microthruster : Principle of Operation

• Microthruster parts
 – Nozzle
 – Igniter
 – Chamber
 – Seal

• Operation
 – Chamber filling with solid propellant
 – Propellant heating by Joule effect and ignition
 – Combustion, gas production and thrust force

• Requirements
 – ignition temperature : ~ 200°C
Microthruster : Principle of Operation

Array of 4x4 microthrusters (16 thrusters)
DEMO Assembling

• Filling of the parts with propellant
 – Igniter with ZPP
 – Sealed chamber with GAP

• Bonding
 – Thermal gluing (epoxy glue)
 at low temperature (60-80°C)
DEMO: Ignition Tests

- Ignition tests
 - Ignition power: 100 – 150 mW
 - Ignition time: 20 – 130 ms
 - Combustion time: ~ 320 ms

Videos made at LAAS, Toulouse, France
Conclusions

• Turn ideas into demonstrators
• Advance the technology base
• Encourage start-up initiatives
 – Seyonic (1998), Sercalo Microtechnology (1999), NanoWorld (2000), ...
• Encourage technology transfer
 – Intersema (pressure sensors), MicroFlow Engineering (Inhalers), CSEM, Colibrys, ...
Recent Start-up Companies

Sercalo Microtechnology SA
Production of Optical MEMS Switches and Attenuators

Seyonic SA
Engineering and manufacturing of microfluidic devices and systems for life sciences and space research

NanoWorld SA
Nanotools for Scanning Probe Microscopy
Remerciements

• Les Autorités de la République et du Canton de Neuchâtel et l’Université de Neuchâtel
• Les membres de SAMLAB
• Le CSEM S.A.
• L’ESA GSTP/AST et l’ESA PRODEX
• Le comité pour la technologie et l’innovation (CTI) – M²S², MedTech.
• Le Conseil des Ecoles polytechniques fédérales – MINAST, Optics, TOP NANO 21.
• Fond national suisse de la recherche scientifique
• Office fédéral de l’éducation et de la science