Neuchatel Transformation from Watch Industry to MEMS-based Cluster Role of Universities

Nico F. de Rooij

Sensors, Actuators and Microsystems Laboratory
Institute of Microtechnology

University of Neuchatel, Switzerland

EPFL-STI-IMM

www-samlab.unine.ch

Outline

- Introduction
- Consumer Products (watches)
- Microfluidic Dispensing Systems
- Chemical Sensors
- Tools for Nanoscience
- Optical MEMS
- Power MEMS
- Concluding remarks

University Role/Mission

- Education
 - Bachelor, Master, PhD Program
- Conduct Fundamental and/or Applied Research
- Applied Research
 - University/Industry Collaboration
 - "Successful" Research : Technology Transfer
 - Independent Research
 - "Successful" Research: Technology Transfer Start-up Companies
 - Intellectual Property Right (IPR)
 - Incubators (NEODE)

Institute of Microtechnology University of Neuchatel (IMT UniNE)

- IMT UniNE started its activities in 1975
- The Jurassic Arc was in an economic crisis, due to massive job losses in the mechanical watch industry (arrival of the quartz watch)
- IMT UniNE's original mission:

Education

Applied Research

Support Local Industry

Regional Network in MNT

Joint efforts for education and research in the fields of Micro- and Nanotechnology (MNT)

Goal: Benefit from the complementary strengths of the members

Mission of the "Pôle"

- Collaboration in educational programmes
- Dual appointments for selected key people
- Establishment of joint research programs
- Co-ordination of investments in laboratory equipment
- Joint research laboratories: CMI and ComLab
- Joint industry cont(r)acts

Power MEMS

Consumer Products
Sensors/Actuators

Telecommunication
Optical MEMS

Life-Sciences
Bio-MEMS

Advanced Instruments
Nano-Tools

Life-Sciences

Micro-Fluidics

- For 2002 / Source: www.fhs.ch
- Watches, movements and components (globally):
 - 1.5 Billion pieces / year
 - 16 to 17 Billion CHF 1 CHF ≈ €0.64; 1 CHF ≈ US\$ 0.80; 1 CHF ≈ ¥87
- Switzerland:

institute of microtechnology university of neuchâtel

- 120 Mio. watches, movements and components
- 28 Mio. finished watches = 10.5 Billion CHF
- Average export price: 362 CHF (J: 30 CHF / HK: 7CHF)
- Global Production of finished watches:

Swiss Export of Finished Watches

For 2002 / Source: www.fhs.ch

Value (in Mio. CHF)

Mechanical

- Quartz anal.
- Quartz digit.

Process features:

- Implanted piezoresistors
- Precise electrochemical etch stop
- Anodic Bonding

- Altitude variation of 1 m:
 - ~0.1 mbar \equiv ~150 pm
- Resolution:
 - ~3µbar \equiv ~3cm altitude variation
- Sensor power consumption:
 - $\sim 1.3 \mu W$

Tissot T-Touch (Tactile Crystal)

ASULAB

- Altimeter
- Weather forecast
- Temperature (with US/EU Units)
- Compass, chrono, alarm

C. Germiquet, R. Dinger et al., "ALPINIST, ...", Proc. Société Suisse de Chronométrie, Le Sentier, (Oct. 1999)

www.asulab.ch

Mechanical Watches

UV-LIGA (SU-8)

- M.Despont, H. Lorenz, N. Fahrni, J. Brugger, P. Renaud, P. Vettiger, "High aspect ratio ultrathick, negative-tone near-UV photoresist for MEMS applications", Proc. IEEE MEMS, Nagoya 1997, pp. 518-522.
- H. Lorenz, M. Despont, P. Vettiger, P. Renaud, "Fabrication of photoplastic high-aspect ratio microparts and micromolds using SU-8 UV resist", Microsystem Technologies, 4 (1998), pp. 42-47.

Watch microcomponents

Cam of the days

Escape-wheel

Why Single Crystal Silicon?

 Kurt Petersen, "Silicon as a Mechanical Material", Proceedings of the IEEE, vol.70, no.5, May 1982, pp. 420-57.

Well-known and controlled properties

 Low density (2.33), amagnetic, electrical conductor, easy to overcoat, ...

Machining by Deep Reactive Ion Etching (DRIE).

SPR

Elastic behavior of Silicon

CSPD

Silicon Structures of Watch Components

 Machining of complex mechanisms with sharp edges

Reduced friction

Higher lifetime

csem

Dual Wheel Escapement with Si-Wheels

institute of microtechnology university of neuchâtel

CSPM

Dual Wheel Escapement with Si-Wheels

- Complex silicon wheels with stopper teeth
- Reduced friction
- Reduced moment of inertia

MST based instruments

Spin-off Activities:

µfluidics

chemical sensors

lab-on-chip

Life Sciences: Space Bioreactor

Built to evaluate the growth characteristics of yeast cells in microgravity
Flown by ESA onboard IML

Spacelab July 1994, March

1996 and January 2003

Working principle

Flow Sensor

- dual piezo-resistive low pressure sensor
- 4.75 x 9.5 x 1 mm³
- 5 mL/h full scale
- accuracy ~ 2%

Dispensing Systems

Advantages:

- Control of the liquid quantity at the dispensing site.
- Direct, real time measurement of the aspirated or dispensed volume.
- Status/diagnostic of the system functionality (clogging, etc.).

Sensor Controlled Liquid Handling

Working principle

single sensors pH-ISFET

multiple sensors (pH, ORP, Conductivity, T)

Dynamic FLASH Titration Process (1)

ThermoOrion Flash Titrator

Nanotools

AFM on MARS

Tuning Fork based AFM Probes

New probe concept

Tuning fork + Cantilever

Batch fabrication of the probe

Si cantilever k = 1 - 550 N/m

The A-Probe (The Akiyama Probe)

- 1. Technology Transfer initiated
- 2. Commercialization of A-probe AFM by NanoWorld Inc.
- 3. Development of a dedicated A-probe AFM Instument by NanoSurf Inc.

Optical MEMS

MEMS for Fiber Communication

Actuator, Grooves, Mirror

institute of microtechnology university of neuchâtel

Switch Details

Latching Multimode Fiber 2x2 Switch

Latching on Multimode Switch

92 V

52 V

Power MEMS using Solid Propellant Based Actuators

Microthrusters for Nanosatellites/Picosatellites

http://www.aero.org/technology/etd.html

Solid Propellant Technology

- Combustion : large quantity of energy from small volume
- Solid fuel: no leakage, stability in time
- No moving parts, eliminating frictional force and making technological fabrication easier
- The chamber is not pressurised, the reservoir does not need to be massive

Microthruster: Principle of Operation

- Microthruster parts
 - Nozzle
 - Igniter
 - Chamber
 - Seal
- Operation
 - Chamber filling with solid propellant
 - Propellant heating by Joule effect and ignition
 - Combustion, gas production and thrust force
- Requirements
 - ignition temperature : ~ 200°C

Microthruster: Principle of Operation

► Array of 4x4 microthrusters (16 thrusters)

DEMO Assembling

- Filling of the parts with propellant
 - Igniter with ZPP
 - Sealed chamber with GAP

- Bonding
 - Thermal gluing (epoxy glue)at low temperature (60-80°C)

DEMO: Ignition Tests

Ignition tests

Ignition power: 100 – 150 mW

- Ignition time : 20 - 130 ms

Combustion time : ~ 320 ms

Conclusions

- Turn ideas into demonstrators
- Advance the technology base
- Encourage start-up initiatives
 - Seyonic (1998), Sercalo Microtechnology (1999),NanoWorld (2000),...
- Encourage technology transfer
 - Intersema (pressure sensors), MicroFlow
 Engineering (Inhalers), CSEM, Colibrys, ...

Recent Start-up Companies

Sercalo Microtechnology SA

Production of Optical MEMS Switches and Attenuators

Seyonic SA

Engineering and manufacturing of microfluidic devices and systems for life sciences and space research

NanoWorld SA

Nanotools for Scanning Probe Microscopy

Remerciements

- Les Autorités de la République et du Canton de Neuchâtel et l'Université de Neuchâtel
- Les membres de SAMLAB
- Le CSEM S.A.
- L'ESA GSTP/AST et l'ESA PRODEX
- Le comité pour la technologie et l'innovation (CTI)
 - M²S², MedTech.
- Le Conseil des Ecoles polytechniques fédérales
 - MINAST, Optics, TOP NANO 21.
- Fond national suisse de la recherche scientifique
- Office fédéral de l'éducation et de la science

