
分子が拓く 未来エレクトロニクス

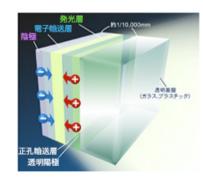
山口茂弘(名古屋大学大学院理学研究科)

有機ELディスプレイ

SONY が "Organic EL TV"を販売開始!!

EL = electroluminescence (電界発光)

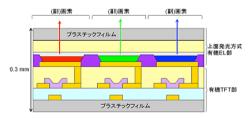
薄さ, たったの 3 mm!! かつ, 美しい!


「次世代のあかり: 有機EL照明」

http://konicaminolta.jp/tech_info/tvcm/oled/index.html

State-of-the Art

Red, Green, Blueの3種類の発光体を使った有機ELディスプレイ


プラスチックエレクトロニクス

フレキシブルディスプレイ

有機ELと有機トランジスタの組み合わせ

SONY, 2007

http://www.sony.co.jp/SonyInfo/News/Press/200705/07-053/

圧力センサー付き人工皮膚

オールプラスチックによる実現: 人々の生活スタイルを変えるポテンシャル

有機エレクトロニクスの展望

有機エレクトロニクスの基幹技術 新生活形態:モバイル家雷

エネルギー問題の切り札: 太陽光の有効利用

分子エレクトロニクス 単分子デバイス 分子コンピュータ

有機トランジスタ プリンタブル 可溶性有機半導体 ヘテロ接合有機太陽電池 高効率電荷分離 電子輸送性材料

有機レーザー 大電流密度 新デバイス構造 超高効率有機半導体 超高効率発光体

有機ELディスプレイ 大画面化 アモルファス高分子材料 蛍光性有機分子

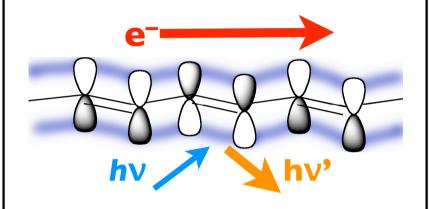
色素增感太陽電池 有効太陽光利用 近赤外吸収色素 高耐久性色素

新用途展開 計測・通信・医療

2010

2015

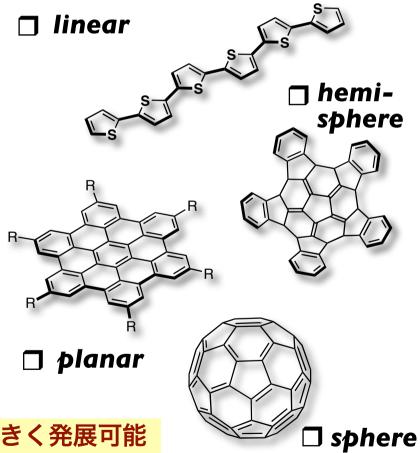
2020


2025

2030

この分野の発展の土台は、材料・分子の開発

その主役:π電子系化合物


π共役分子

π電子の非局在化により特異な物性が 発現

- □ 電荷輸送性(半導体特性)
- □ 発光性(蛍光・燐光)

多様な分子構造:設計の柔軟性

真に優れた一つの分子の登場により大きく発展可能

"時代を動かす分子"

A Breakthrough in Organic EL

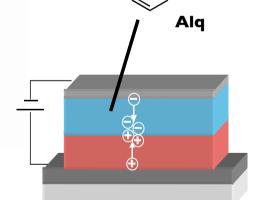
C. W. Tang (1987)

Appl. Phys. Lett., 1987, 51, 913-915.

Times cited: 5,295

electrontransporting materials: best standard over 20 years!

dard years!


Organic electroluminescent diodes

C. W. Tang and S. A. VanSlyke

Research Laboratories, Corporate Research Group, Eastman Kodak Company, Rochester, New York 14650

(Received 12 May 1987; accepted for publication 20 July 1987)

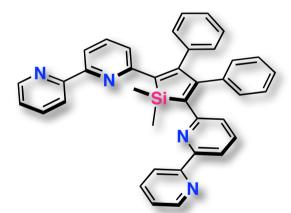
A novel electroluminescent device is constructed using organic materials as the emitting elements. The diode has a double-layer structure of organic thin films, prepared by vapor deposition. Efficient injection of holes and electrons is provided from an indium-tin-oxide anode and an alloyed Mg:Ag cathode. Electron-hole recombination and green electroluminescent emission are confined near the organic interface region. High external quantum efficiency (1% photon/electron), luminous efficiency (1.5 lm/W), and brightness (> 1000 cd/m²) are achievable at a driving voltage below 10 V.

多層薄膜デバイス構造を提案!

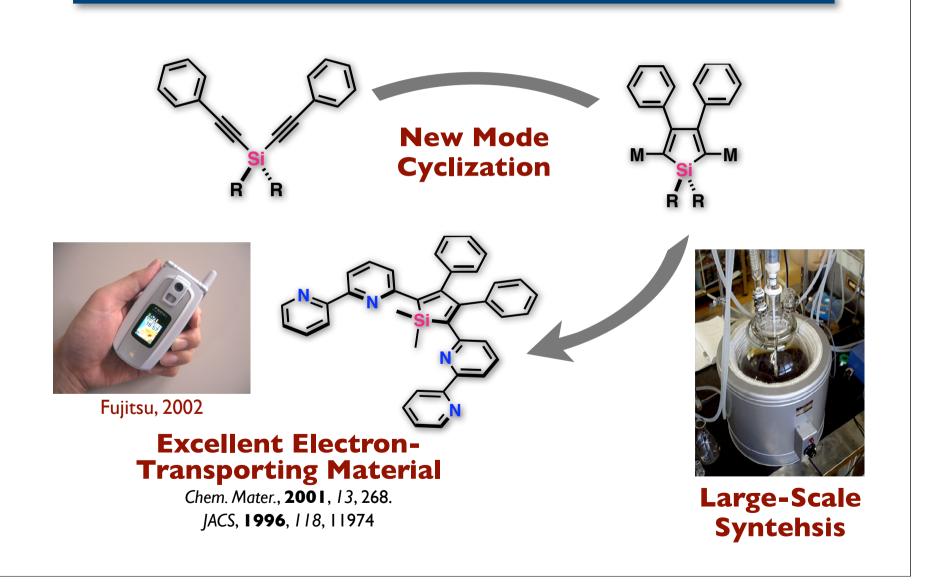
シンプルなアルミニウム分子が発展の鍵

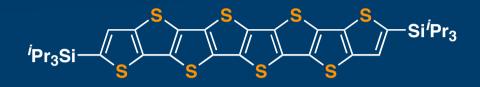
これまでにない"新奇な構造"を求める

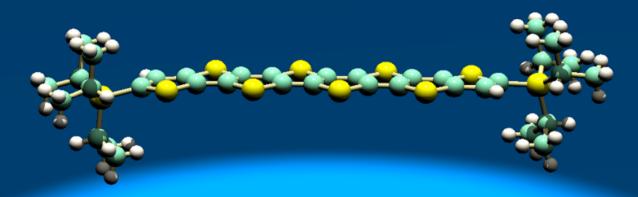
我々のアプローチ: 典型元素をつかう!



個々の元素の特性を利用した分子設計により 従来にはない機能分子の実現が可能




Excellent Electron- Transporting Material


例えば、ケイ素材料 世界最高レベルの電子輸送性材料 有機EL分野の世界標準物質 ケイ素だからこそ実現できる特性

独自の分子を独自の反応により創る

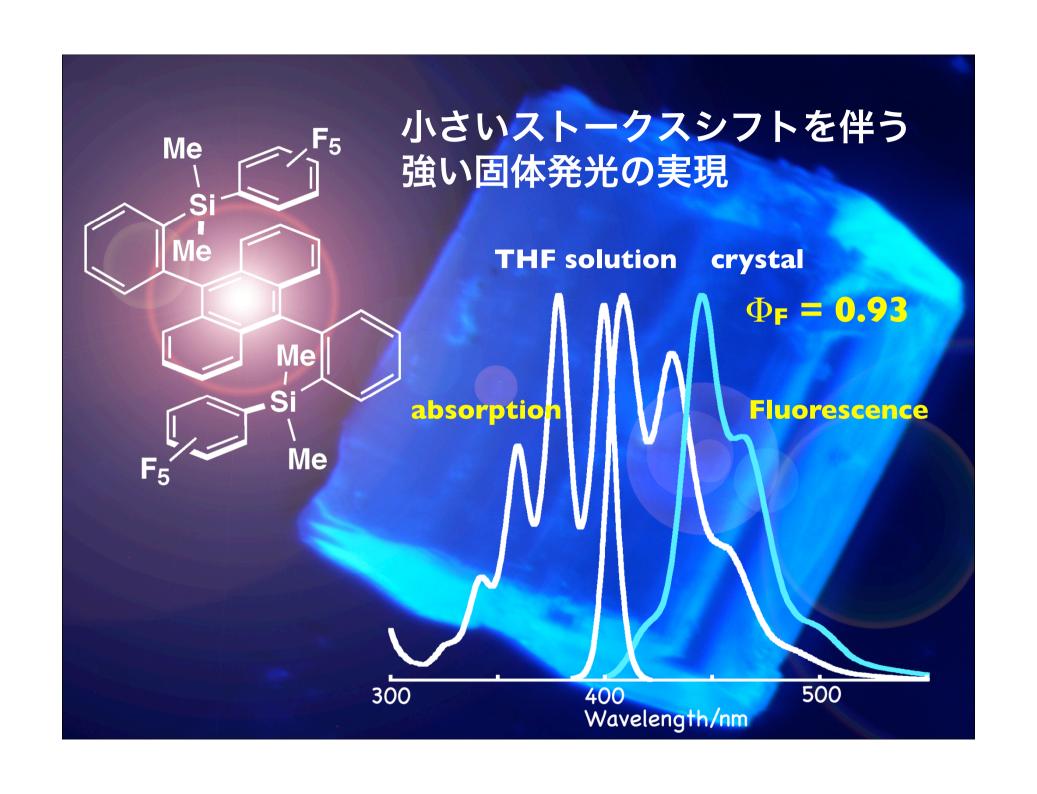
縮環オリゴチオフェン

2.0 nm

X線結晶構造解析で決定した結晶中での分子構造

エレガントに創る!

未踏物性の発現を目指す


【究極の光物性】

- ・高効率固体発光:100%の量子収率で光る!
- ・単分子白色発光
- ・低閾値増幅自然誘導放出発光
- ・高効率固体赤色発光

【究極の電子物性】

- ・単結晶での高電荷移動度
- ・アモルファス状態での高電荷移動度
- ・可溶性n型半導体特性

etc.

