Foresight in Innovation Policy-Making – Perspectives from Finland

Torsti Loikkanen
Senior Research Scientist
VTT Innovation Studies
Outline

1. Glance on the national innovation system
2. Overview on recent development in foresight
3. Recent exercises
 - FinnSight 2015 - overview and assessments
 - TekBaro and performance of innovation systems
4. Towards more integrated impact assessment and foresight approach
5. Summing-up

-- perspectives from the research community --
1. Glance on National Innovation System
In 1991-93 major economic depression, followed by…

- Finland - small open export dependent economy
- Structural change from primary production and industrial economy to knowledge based economy from 1940s to 2000s
- Towards systematic innovation policies since early 1980s (S&T Council, Tekes…)

T. Loikkanen, The 3rd International Conference of Foresight, 19-20 Nov 2007, Tokyo, Japan
… strong policy response with essential private and public investments in research, followed by…

Source: Statistics Finland, TekesDM 36100 and 38065; 11-2005 Copyright © Tekes

T. Loikkanen, The 3rd International Conference of Foresight, 19-20 Nov 2007, Tokyo, Japan
...rapid structural change of the economy and by...

![Graph showing economic growth](image-url)

- Electronics & electrical eq.
- Metal & engineering
- Pulp & paper
- Chemicals
- Textiles & apparel

(at 2002 prices)
Exports of Finnish high tech products totalled 11.1 billion euros in 2005, i.e. 21.3% of total exports of goods.

Source: Statistics Finland, according to the OECD product catalogue defined in 1995.

DM 32186, 36054 and 38065
03-2006 Copyright © Tekes
...success of nation in performance comparisons of innovation systems

...which raises a question for the future: how to maintain and further develop innovation system?
Main Initiatives in Developing Innovation System and Policy

- Renewal of national innovation strategy (till March 2008)
- Renewal of sectoral research system
- New Min of Labor and Industry (1.1.08) -- broad scope for IP
- Strategic centers of excellence for S&T&I - new way of focusing and coordinating (too) dispersed R&D resources
 - Foci of 1st phase: energy and the environment; metal products and mechanical engineering; forest cluster; health and well-being; ICT industry and services
- Structural development of universities, “top university”...
- Development of impact assessment and foresight (STPC)
2. Overview of Recent Development in Foresight
Foresights and Future Oriented Exercises
Foresight Activities

- Foresight and future oriented thinking gaining ground -- spurred also by globalization
- Demand in industries and confederations increasing
- Activities of IP organizations -- MTI, Tekes, Academy, VTT, SITRA, national platform, etc.
- EU initiatives (7th FP, TPs, JITs) and networks (ESTO, ETEPS, ERAWATCH, FORERA, For-Learn…)
- Nordic initiatives -- NICE & NER (H₂, ICT…), Foresight forum
- Legitimacy of IP and public research funding topical issues -- spur to conceptual development of IA and foresight?
- Still: fragmented, not well-coordinated -- systematic -- well-established, inadequately resourced (service provider´s aspect)
3. Recent Exercises
FinnSight 2015 – National Foresight Exercise

The Outlook for Science

Technology and Society

Funding agency for basic research

Main public funding agency for R&D
Objectives of FinnSight 2015

- identify and explore the **drivers** expected to have impact on Finnish business and society
- identify **focus areas of competence** for the future S&T, society and business, and **establish** related **priorities**
- define **Strategic Centres of Excellence in S&T&I** (in line with Government decision-in-principle 7.4.2005 on the development of public research system)
- support **strategic work** of Academy and Tekes
- **deepen collaboration** between Academy and Tekes, and foster a climate of multidisciplinary debate
- Time span: 10 years

(Source: http://www.finnsight2015.fi/)
Execution of FinnSight 2015

- Steering group headed by DGs of Tekes and the Academy; Core managing group headed by Prof. Ahti Salo (HUT)
- 120 panelists suggested by Tekes and Academy, 1/3 from industries
- Each panel (12 experts, headed by chair-pairs) debated in 3 meetings (4 hrs.) about trends and drivers, focus areas of competence, and suggestions and recommendations (with web-based consultation)
- Chair-pairs debated in 3 common meetings of areas between panels
- Main report: overview on possible choices of national S&T and related arguments; 10 reports by chair-pairs
- Foresight work executed in 6 months

(Source: http://www.finnsight2015.fi/)
FinnSight 2015 -- Lessons by Prof. Ahti Salo

Use multiple methodologies
- Solicit expert judgments
- Complement judgments with modeling
- Examine differences

Admit incomplete information
- Forecasts are often wrong, anyway
- We can work with incomplete information
- Uses in decision making

Promote participation
- Bring in multiple perspectives
- Build a well-defined process
- Provide ICT support

(http://www.finnsight2015.fi/)
FinnSight 2015
- Preliminary Assessment by O. Kuusi (*)

● Gives a loose vision for the development of Finnish S&T but not development strategy with a way to action
● No prioritization in strict sense (or not presented in reports)
● Summary Report
 ▪ “A list of appropriate R&D topics”
 ▪ Dialogue not considered, although debated by the panel of Understanding and Human Interaction in Main Report
● Group discussions reported by panel chairs not good practice to present opinions -- tends to lead to quasi consensus of issues in which panelists disagree
● Prioritization central objective but project meets well-known problem of foresight practitioners -- future opportunities of S&T can not be opened and prioritized effectively by the same methodology

(*) Source: Article of Osmo Kuusi’s article in Finnish in Futura, a journal of Finnish Future Society. Dr. Kuusi, senior researcher at VATT, is among the pioneers of researchers of future studies in Finland.
Preliminary Observable Impacts
(cf. objectives)

- Executed at the time of many changes on national IP agenda -- short term impacts? – attribution to FinnSight 2015?
- Supported establishment of Strategic Centres of Excellence in S&T&I by identifying focus areas of competence
- Deepens collaboration between the Academy and Tekes
- Supports strategic work of the Academy and Tekes
- Strengthens foresight culture among the Academy, Tekes and participating experts

(http://www.finnsight2015.fi/)
3. Technology Barometer (TechBARO) and Performance of Innovation Systems

The background: critical national debate about the reliability of performance comparisons of innovation systems
Technology Barometer: 3rd Round in 2007

- Instrument for measuring nation’s orientation and citizens’ attitudes towards a knowledge-based society
- Consists of indicator-based country comparisons and forward looking survey inquiry to stakeholders (incl. youth)
- Conducted by Finnish Association of Graduate Engineers (TEK) and VTT
Indicator-based performance comparisons of selected countries
Forward Looking Survey Enquiry of Stake-Holders -- Examples

- Rating the abilities of science and technology in problem solving
- Appreciation of various professions by senior secondary level school students
- Key questions of the role of science and technology for the society
- Trust in societal institutions
Key questions of the role of science and technology for the society

Politicians most optimistic about the opportunities of S&T in the future

Rating the abilities of science and technology in problem solving

Trust in societal institutions

Appreciation of various professions by senior secondary level school students

<table>
<thead>
<tr>
<th></th>
<th>Previous ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Business man/woman</td>
</tr>
<tr>
<td>2</td>
<td>Solicitor (lawyer)</td>
</tr>
<tr>
<td>3</td>
<td>(5) Journalist</td>
</tr>
<tr>
<td>4</td>
<td>Doctor</td>
</tr>
<tr>
<td>5</td>
<td>▲ (3) Athlete</td>
</tr>
<tr>
<td>6</td>
<td>▼ (7) Engineer</td>
</tr>
<tr>
<td>7</td>
<td>▼ (9) Artist</td>
</tr>
<tr>
<td>8</td>
<td>Scientist (Researcher)</td>
</tr>
<tr>
<td>9</td>
<td>▲ (5) Judge</td>
</tr>
<tr>
<td>10</td>
<td>Politician</td>
</tr>
</tbody>
</table>

Forward Looking Survey Enquiry of Stake-Holders -- Examples

Appreciation of various professions by senior secondary level school students
Technology Barometer - Conclusions

- Starting point: controversy of reliability of performance comparisons of innovation systems
- National response by TEK to the debate on performance of innovation systems
- Ex-post indicators reveal points of intervention -- forward looking survey enquires identifies areas of improving
- To be published once in 2-3 years -- will be further developed

Research Agenda of VTT -- Towards Integrated Concept of Past, Current and Future in IP

Innovation studies based on SFINNO database ("ex-post")
Impact assessment and evaluation studies (policies, programmes, institutions) on national and EU level

Embedding ("rooting") of innovations and technology assessment
Impact assessment and evaluation studies

Future oriented research

Technology foresight ("ex-ante")
Technology assessment
Technology roadmaps
Technology barometer

EX POST POLICY EVALUATION

... from past ...
... to present ...
... to foresight ...

FUTURE ORIENTED POLICY STUDIES

... outlining the future development path on a basis of integrated analysis of the past, current and future...

Source: Loikkanen et al. 2006.
Rationale and Legitimacy of IP and Public Research Funding e.g.

- **Areas of imperfect markets**: ... areas with socio-economic importance in which markets function imperfectly (public / common goods, e.g. health care, environmental protection, defense, education, science and research, and...

- **...respective infrastructure areas**: ... socially important infrastructures and public good areas, such as transportation, energy, but also...

- **...education, science and innovation infrastructure**: ... creation, maintenance and financing of education and research infrastructure or “innovation system” supporting education, basic research, (re)training...

- **R&D areas requiring long time horizon**: ...areas of imperfect markets such as environmental protection...

- **Areas requiring critical R&D mass and expenses**: ...critical mass and big size of R&D facilities such as aeronautical, space and energy research (e.g. CERN, EBML, ITER)...

- **Welfare through competitiveness**: Government R&D funding can be justified for boosting economic growth in order to enhance national competitiveness and consequent improvements to economic and social welfare in through income and wealth creation, improved employment, etc...

- **R&D schemes for SMEs**: ... most companies are SMEs with limited R&D resources but important for economy and employment giving legitimacy to public R&D funding schemes

- **System failures etc.**: ... networking of key actors, coordination, avoiding doubling innovation efforts, et.

Source: Loikkanen et al. 2006.
Roles of Impact Assessment and Foresight in Justifying IP

Expert communities of their own? -- More intensive co-operation for creating synergist policy intelligence?

1. Why tax-payers’ money in IP and research funding?

2. How far evaluation and impact assessment tell about IP outcomes & impacts for justifying public research investments?

3. How far foresight supports objectives of future IP and related allocation of public research investments?
Changes Since ASTPP Network*?

ASTPP-TSER: Strategic Intelligence combining evaluation, technology foresight and technology assessment tools

Due e.g. to legitimacy of IP, policy-makers are used and experienced in impact assessment tools, and understand their merits, as compared to foresight.

Foresight, although recognized, not well-established tool so far; used on different levels with varying expectations, and not well coordinated.

Technology assessment increasingly recognized aspect in impact assessment and foresight.

“Converging” Characteristics of Impact Assessment and Foresight?

From ex-post evaluation exercise towards interactive learning which supports strategic orientation for the future.

Foresight is interactive learning process, determined by path-dependence and accumulation and sharing of future oriented knowledge.

Legitimacy and rationale of IP

Evaluation, impact assessment

Elements for enhancing strategic policy intelligence by integrating the tools among decision-makers and experts?
Comprehensive IP Framework Combing Main Elements of Policy-Making

Continuous learning process of policy-makers towards strategic policy intelligence

Source (with slight revisions): Loikkanen, Kutinlahti and Eerola 2006.

T.Loikkanen, The 3rd International Conference of Foresight, 19-20 Nov 2007, Tokyo, Japan
Towards Linking of Past - Current - Future in Policy-Making

Industrial and socio-economic development
- Macro economic development
- Employment
- Industrial development
- Skills and education
- R&D and innovation
- Welfare
- Environment

Future trends
- Anticipating future changes
- Megatrends and weak signals

EVALUATION
- Success of public policy
 - Relevance
 - Effectiveness
 - Efficiency
 - Sustainability

Public policy-making
- Assessment of alternatives
 - Policy analysis
 - Impact assessment
 - Technology assessment

FORESIGHT
- Strategic decision-making

Source: Valovirta and Hjelt, 2006

T. Loikkanen, The 3rd International Conference of Foresight, 19-20 Nov 2007, Tokyo, Japan
Cons and Pros of Integrated Approach of Impact Assessment and Foresight

- More aware solutions for complex decision-making, and distributed strategic intelligence (ASTPP)?
 -- e.g. impacts of globalization on strategy and rationale of national innovation policy
- More coherent, comprehensive and systemic policy?
- Cooperation opportunity to enrich separate cultures -- mutual learning and un-learning
 -- benefits emerge through collaboration
- Practical orientation of expert and policy-making communities?
- Variations between cultures - context dependence

Source: Loikkanen et al. 2006.
5. Summing-Up
Summing-Up

- Foresight as IP instrument recognized but not well-established
 -- elements of 2nd, 3rd and 4th generation foresight model
 -- towards well-established and adequately resourced practices
- Integration of impact assessment and foresight -- towards broader IP scope, integrated framework, and more coherent policies
- Globalization -- the key challenge for IP and underlying policy rationale -- a spur to foresight within a systemic IP framework

"Foresight is complicated because technological change is inherently uncertain, innovations relate to information asymmetries between present and future, and innovation process is not only influenced by future uncertainties but also generates them" (S. Metcalfe 1995)
Republic of Finland

Population (2005) 5,238,460
GDP (2004) 149.7 EUR billion
Total labor force (2004) 2.4 million
Area in km² 338,145
Member of EU since 1995

In 2003 the mean age of
- males 38.5 years
- females 41.6 years
Age of 100 years or more reached by 337 persons
- 46 males
- 291 females

Climate - South Finland
Climate - North Finland

THANK YOU!