21st Century Innovation Systems for Japan and the United States Lessons from a Decade of Change

Government-Industry R&D Partnerships Japanese Experiences "Introduction of NEDO"

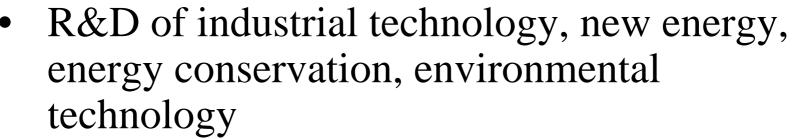
January 2006 Kaoru HONJO Executive Director New Energy and Industrial Technology Development Organization (NEDO)

Contents

- 1. Outline of NEDO
- 2. Examples of R&D Activities
 - -Nanotechnology and materials Processes Technology
 - -Fuel Cell and Hydrogen Technology

Outline of NEDO

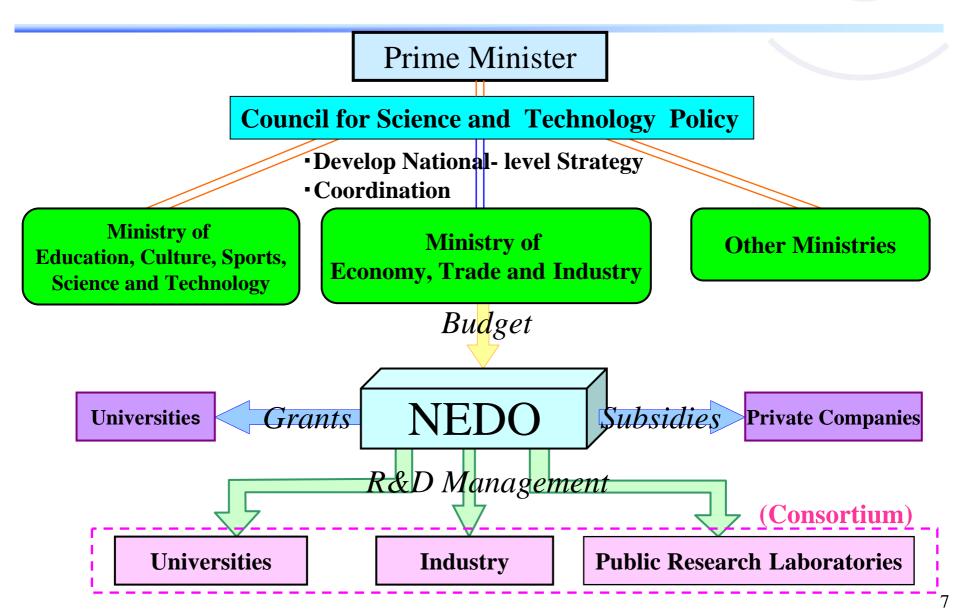
History of NEDO


下 EDO 技術開発機構

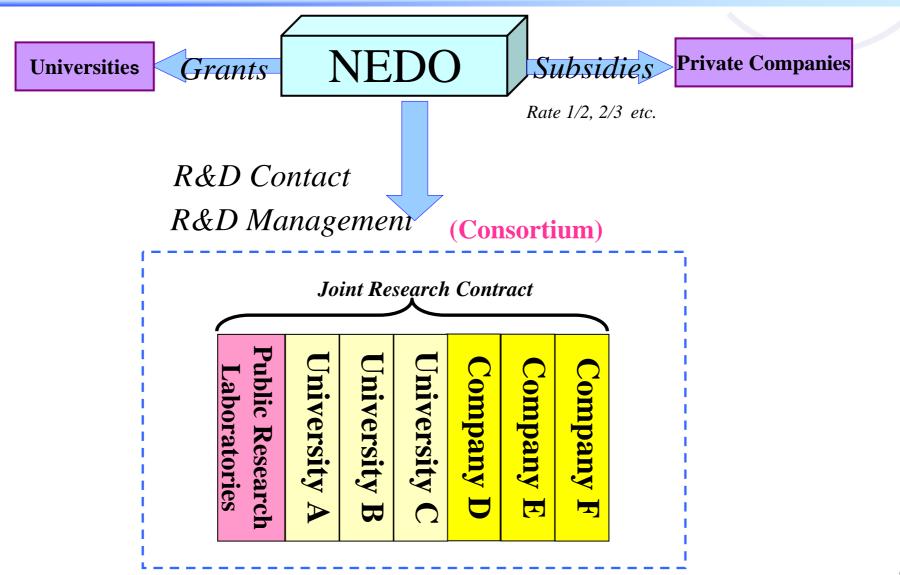
- **1980: Established (New Energy Development Organization)**
- 1 9 8 8 : Added industrial technology R&D (New Energy and Industrial Technology Development Organization)
- 1990 : Added global environment R&D
- **1993 : Added promotion of new energy and energy conservation**
- 2000: Added support for private companies to strengthen international competitiveness
- 2003 : Re-organized as an "Incorporated Administrative Agency"

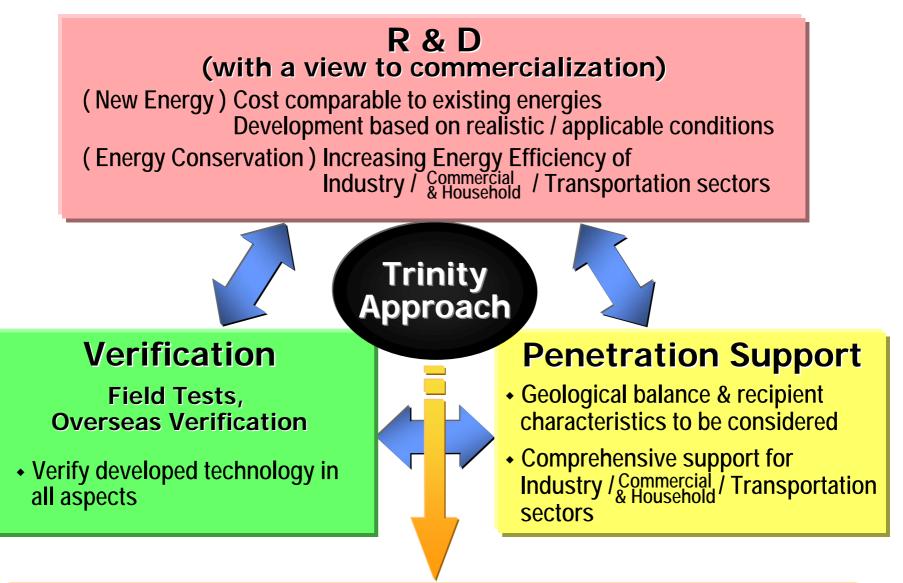
NEDO's Mission

CNEDO 技術開発機構


- To strategically prioritize and promote R&D projects on industrial, new energy, energy conservation and environmental technology by means of government ,industry and academic cooperation.
- To contribute to solve energy and environmental problems.
- To yield successful results through flexible operation management and stringent evaluation systems.
- To disseminate information about NEDO's activities and achievements to the public.

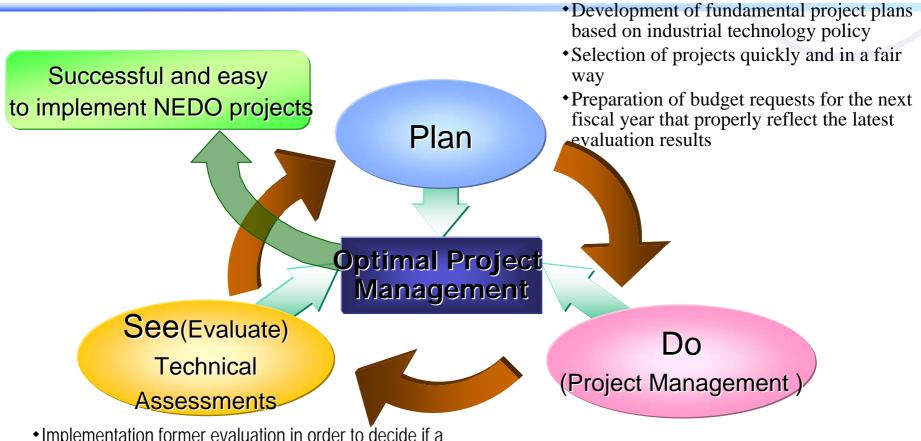
- •Industrial Technology--- IT, Nano, Bio, Mechanical system
- •Energy Technology---New energy, Energy conservation, Fuel cell
- Environmental Technology
- Penetration support of new energy and energy conservation


Japan's R&D Promotion Scheme


Basic Principles of NEDO's R&D Scheme

Project Style & Formation

NEDO's Energy Related Activities



Contribution to realization of the "Long-term Energy Supply/Demand Outlook" (2010)

NEDO 's "Plan-Do-See" Approach

CNEDO 技術開発機構

to Optimal Project Management

- Implementation former evaluation in order to decide if a project should be start or not
- Implementation of midterm evaluations for all projects after 3 years and post-project evaluations after project completion
- Implementation of follow-up surveys in order to improve evaluation methods and project management tools

- Organization of project implementation groups
- Effective management through appropriate assignment of roles to NEDO and project managers
- Promotion of smooth and continuous R&D through multi-year contracts

Budget of NEDO

		(Billion yen)
	FY2004	FY2005
R&D	162.9	148.8
Introduction of new energy and		
energy conservation	59.4	63.9
International affairs	14.8	12.0
Coal related activities	5.0	5.0
Alcohol production & sales	56.0	56.3
Others	3.4	2.2
Total	301.5	288.2

Organization of NEDO (October 1, 2005)

METI's 19 R&D Programs

- **②** Bioscience-Driven Recycling-Based Industrial System Creation
- **③** Basic Equipment and Devices for Advanced Information Communications R&D
- **④** Basic Software Development Promotion Program for Information Communications
- **(5)** New Manufacturing Technology Development
- 6 21st Century Robot Challenge
- **⑦** Basic Technology Program for a More Sophisticated Space Industry
- 8 New Technology Program for Prevention of Global Warming
- ③ 3R ('Reduce', 'Reuse', 'Recycle')
- **1** Comprehensive Assessment and Management Program for Chemical Substances
- 1 Next-Generation Low-Emission Vehicle Technology Development
- 1 Basic Technology Program for Commercial Aircraft
- **(13)** Energy Consevation Technology Development
- **W** New Energy Technology Development
- **(15)** Fuel Technology Development
- **(16)** Electroric Power Technology Development
- **1** Nuclear Power Technology Development
- **1** Nanotechnology Development
- (1) Innovative Material and Materials Industry Creation

NEDO's FY2005 R&D Budget

Те	chnology Development & Research Development Projects	Amount
1.	Biotechnology and Medical Technology Development Projects	16.6
2.	Electronic and Information Technology Development Projects	18.2
3.	Mechanical System Technology Development Projects	17.4
4.	Environment Technology Development Projects	7.7
5.	Nanotechnology and Materials Technology Development Projects	16.3
6.	Fuel Cell and Hydrogen Technology Development Projects	20.8
7.	New Energy Technology Development Projects	14.4
8.	Energy Conservation Technology Development Projects	7.5
9.	CO2 Fixation and Development for Effective Commercial Uses	0.7
10.	R&D Promotion Projects	27.4
11.	Research Evaluation and Surveys	1.7
то	TAL	148.8

Introduction of the activities of Nanotechnology and Materials Processes Technology

WEDD

-Council for Science and Technology Policy Cabinet Office, Japanese Government March 30, 2001

(1) Life Sciences

(2) Information and Telecommunications

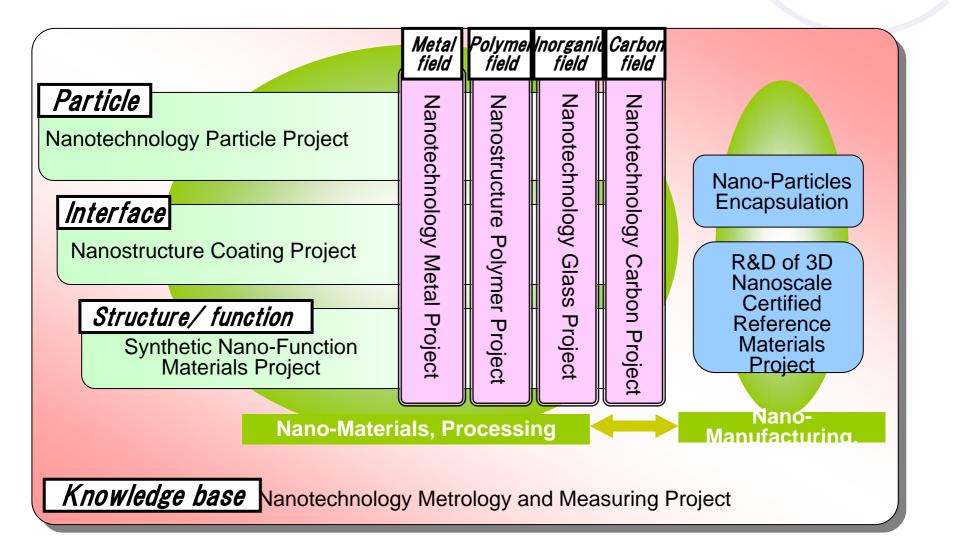
(3) Environmental Sciences

(4) Nanotechnology and Materials

Budget related to S&T

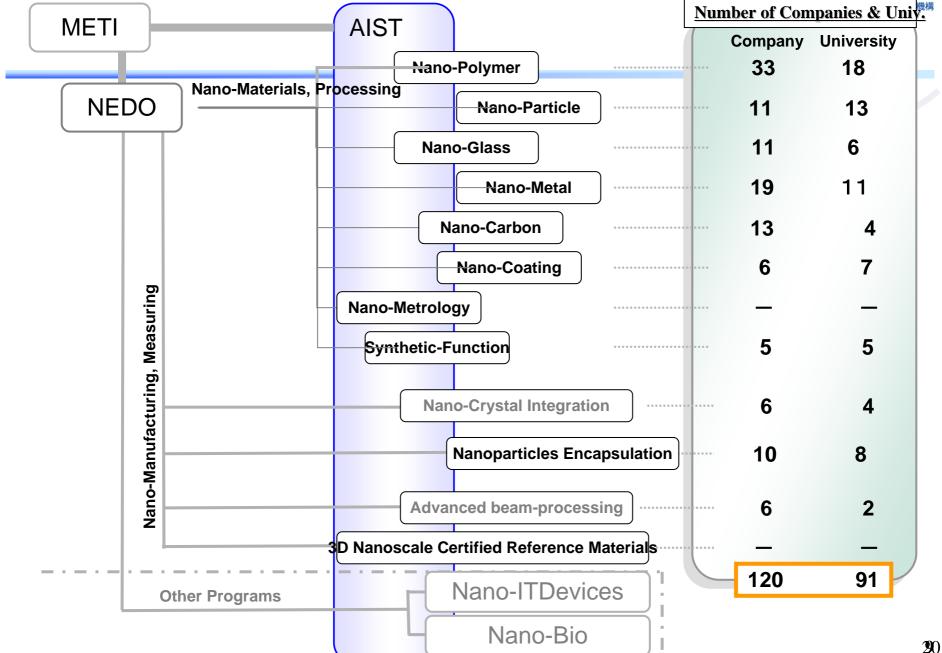
(Billion Yen)

	FY2001	FY2002	FY2003
	390.7	393.4	406.8
Life sciences	19.5%	19.4%	20.1%
	166.3	175.8	175.3
Information & telecommunication	8.3%	8.7%	8.7%
	84.7	100.6	108.8
Environmental sciences	4.2%	5.0%	5.4%
	80.4	85.6	90.4
Nanotechnology and materials	4.0%	4.2%	4.5%
Total amount of above 4 priotisized	2003.1	2027.5	2019.8
areas + Energy + Manufacturing	100%	100%	100%
Technology + Infrastructure + Frontier			
Total Budget for Science and	3468.5	3591.6	3591.6
Technology			


Not Including University Budget except below two (total)

Based on S&T Basic Plan, Council for Science and Technology Policy (2003.5.27)

Structure of the Nanotechnology Program


(FY2005:about \$65million

FY2006:about \$67million NEDO

Nanotechnology Program Research Structure Research

Schedule of Nanomaterials and Processing Sub Program

Project	FY 2000	FY 2001	FY 2002	FY 2003	FY 2004	FY 2005	FY 2006	FY 2007
Nanostructure Polymer Project		10.8	9.6	7.8	7.5	5.5		
Nanotechnology Glass Project	2.5	5.0	5.2	3.6	3.4	3.4		
Nanotechnology Metal Project		2.5	5.6	4.0	3.3	2.6		
Nanocarbon Technology Project			8.5	10.4	9.4	9.0		
Nanotechnology Particle Project		7.5	7.6	5.3	5.1	4.6		
Nanostructure Coating Project		4.2	4.3	3.0	3.0	2.7		
Synthetic Nano-Function Materials Project		2.1	3.0	2.1	2.1	2.0		
Nanotechnology Material Metrology Project		1.9	1.9	1.4	1.4	1.8		\rightarrow

R&D activities of Fuel Cell and Hydrogen Technologies in Japan

Current Topics

Fuel Cell Vehicles (FCV)

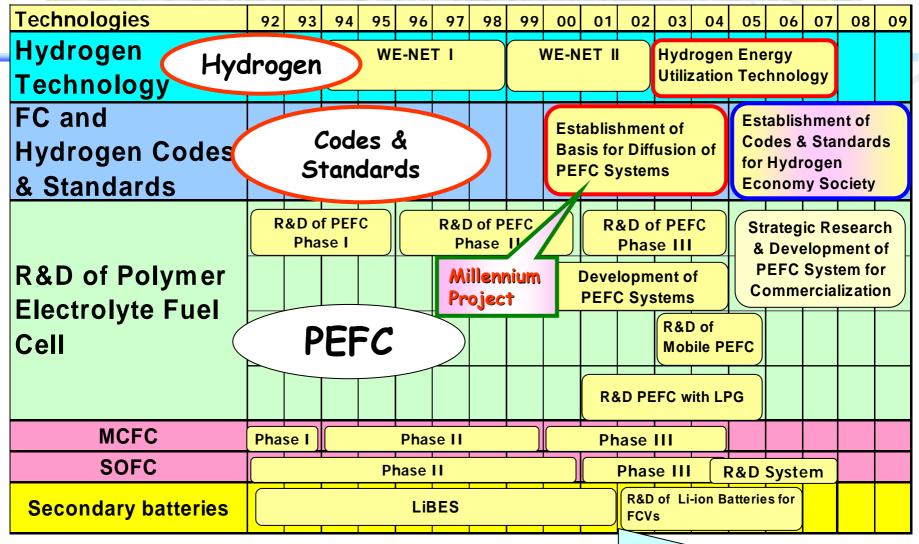
- •December 2001: Prime Minister Koizumi took a test ride in a FCV.
- •October 2002: Fuel cell commercialization and diffusion scenario was decided by concerned ministries.
- December 2002: FCV supplied for Government use.

	Introduction Target		
	2010:	50,000 vehicles	
	2020:	5 million vehicles	
TOYOTA ATOYOT	2030:	12.5 million vehicles	
FUEL CELL HYBRID VENICLE	Support by	<u> Government</u>	
	R&D, De	monstration test,	
	Examina	tion of related regulations	5

Fuel Cell Commercialization and Diffusion strategy

- 1: To 2005 (Basic work and technology demonstration stage)
 - Drawing up FC R&D Strategy and its Implementation
 - Soft-infrastructure/Codes & Standards (Millennium project)
 - Demonstration
- 2: 2005 to 2010 (Introduction stage)
 - Acceleration of the Introduction and Gradual Establishment of Fuel Supply System
 - Leadership of Public Sector as well as FC Industry in Promotion of FCV and Buses
- 3: After 2010 (Diffusion stage)
 - Establishment of Fuel Supply System and Self-sustained Growth of the Market
 - Private Sector Promotion of the Introduction

Forecast of Fuel Cell Introduction				
		2010	2020	
	FCV	50,000 vehicles	5,000,000	<u>15</u>
	Stationary FC	2.2 million kW	10 million	<u>12.</u>


New Target

00.000

million

2030

NEDO R&D of FC/Hydrogen Projects (NEDO tén medo

Toward 15M FCVs and 12.5GW of PEFC systems by 2030

R&D Target for FCV and Stationary FC System

- Commercialization period: 2005-
- diffusion period: 2010-

	FCV	Stationary FC
Power generation efficiency of stack	65%(LHV) @25% of rated output	55% (HHV) @ rated output
Cost of stack	YEN 4,000/kW	YEN 80,000/kW
Efficiency of system	60%(LHV) Pure H2	40%(HHV,net)
Economy	YEN 5,000/kW	YEN 300,000/unit

NEDO

発機構