Economic Impacts of International R&D Coordination: SEMATECH, the International Technology Roadmap, and Innovation in Microprocessors

Kenneth Flamm University of Texas at Austin January 2006

1990s Were An Important and Dynamic Period for the Semiconductor Industry

- New US R&D Strategy in Semiconductors
- Acceleration in rate of innovation in semiconductors
- Increasing global dispersion of technology & production
- This presentation analyzes how these events were linked
 - Focus on microprocessors
- Trace links between details of tech change and economic impacts of innovation

Why Look at Microprocessors?

- Has come to dominate US (geographic) industry
 - In 2004, 46+% of US IC shipments
 - Compare to 29% in 1995, 37+% in 2002

• Compare with DRAMs:

- Approx 14% in 1995, 7% 2001, 11% 2004
- In 90s, highest rate of tech innovation
- Largest value type of semi input to computers
 - Big impact on tech improvement in computers
 - Productivity in downstream IT-using industries
 - Return to this theme at end of talk
- Rich data set

New US R&D Strategy

SEMATECH formed in late 1980s

- Spencer strategic plan, 1992+
- Focus on manufacturing, accelerate introduction of new tech nodes

• From 3 years to 2 years

- Apparent success, inspires imitation elsewhere
- National Semiconductor Technology Roadmap
 - Started as MicroTech 2000, on behalf of NACS
 0 1992 workshop and report
 - SEMATECH provided technical leadership for effort
 - First National Technology Roadmap in 1994
 - Update in 1997, codified 2-year tech nodes

Roadmap Evolved Into International Effort in Late 1990s

- Now called ISTR
- Recognized that leading edge players in semis were multinational, scattered around globe
- Common belief that closer coordination among specialized suppliers, users, has worked to accelerate innovation in industry
- Has worked to keep 2 year nodes coming
 - Not all think is a good thing
 - To date, have been unable to slow it down!
- Unique and interesting structure of great economic interest
 - Unaware of any other high tech industry with similar degree of R&D coordination
 - Coordination– lawyers' ears perk up!
 - But US law passed in 1980s that granted limited antitrust immunity for registered consortia like SEMATECH

International SEMATECH

• SEMATECH also went international in late 1990s

- Recognized that tech capability, best technology now dispersed globally
- Another Bill Spencer initiative
 - Encouraged by USG (including KF@DoD)
- Prior recovery, stabilization of health of US semi industrial base
 - Critical to decision by all parties
- Began with international partnership to work on 300mm wafer tech (13001)
- Continued with non-US companies as full members of IST
 - No continuing USG subsidy after 1997
- Today, share of world semi output accounted for by members exceeds share when formed in late 1980s

International SEMATECH

- SEMATECH dropped the I-word in 2004
- What does this mean?
 - ?... a "branding" issue
 - Still has many international members
 - (including Samsung, most recently)
- Also, spun off subset of R&D activities into ISMI
 - Walled off from access to "highest tech" (e.g., litho) R&D in main SEMATECH organization
 - All 9 "full" SEMATECH members also get membership in ISMI
 - AMD, Freescale, Hewlett-Packard, IBM, Infineon, Intel, Philips, Samsung, Texas Instruments
 - 3 ISMI-only members are do not get access to full SEMATECH information set
 - TSMC, Panasonic/Matsushita Electric, Spansion
 - First Japanese membership in SEMATECH consortia

But...Even as SEMATECH internationalized, US semi industry did less of R&D globally

Very Recent Trend Toward Increased Offshore R&D in US Semi Industry

NSF Data Verify 1990s Trend

Subsidiary R%D as % US Domestic Co R&D

And Subsequent Turnaround

Subsidiary R%D as % US Domestic Co R&D

What to Make of This?

- Speculation
- US Semi Firms Best at What They Were Doing
 - US the place to be for R&D in these areas?
- R&D Cooperation Thru Roadmap in 1990s a Way to Coordinate with Suppliers in Areas Where Best of Breed Not in US
- Increasing Offshore Competence led to Some Increase in Offshore in R&D by US Firms After Millenium

Back to Possible Impacts of Coordination....

Acceleration in rate of innovation in semiconductors!

Two Sources of Improvements in Price-Performance

- Declines in manufacturing cost lead to lower price for given quality / functionality
- Improved capabilities / performance / quality of functions provided by IC
- Both happen, are not independent
 - Design innovation may be needed to use lower cost components productively
 - Improved manufacturing techniques may bring quality improvement
 - Example: smaller features, faster gates
 - But will analyze separately

Declines in Manufacturing Cost

Linked to intro of new tech nodes

- Process innovation \rightarrow smaller feature sizes
- New tech node organized around 50% reduction in silicon area
 - o (30% reduction in feature size)
 - On 2D plane, twice as many devices (transistors, logic gates, DRAM cells) in given area
 - All other things equal, would expect 2x as many devices in given area
 - i.e., *device density* would double with new node
 - To rough order of approximation, IC manufacturing cost per area of silicon has remained roughly constant
 - (more accurately, risen slowly)

Microprocessor Wafer Processing Costs

Wafer Processing Cost Leading Edge Logic, Greenfield Fab

Simplest model

<u>\$ processing cost</u> area silicon devices/Area silicon t

Mfg Cost/device =

- t is what is improved w/innovation in semi lithography
- feature size reduced 30%, device area 50% w/new node
 so t doubles when this happens
- if we assume
 - no quality change (i.e., simply producing same chip in smaller area)
 - c remains constant
 - new t = "technology node" (an approximation) every 3 years
- Then...

Result:

 Manufacturing cost drops by half every new technology node
 every 3 years
 Works out to cost declining by
 -21 % CADR

Compare to Historical Reality at the Leading Edge

Decli	ine Rates in Price-Performance <u>Percent/Year</u>					
Microprocessors,	1975-85	-37.5				
Hedonic Index	1985-94	-26.7				
DRAM Memory,	1975-85	-40.4				
Fisher Matched Model	1985-94	-19.9				
DRAMs, Fisher Matched Model, Quarterly Data						
91:2-95:4 -11.9						
	95:4-98:4	-64.0				
Intel Microprocessors, Fis	her Matched Model	, Quarterly Data				
	93:1-95:4	-47.0				
	95:4-99:4	-61.6				

Prices generally exceeded prediction about costs! Slowed down over time, then speeded up in mid-90s

Why?

- Improvement in device density exceeded 2dimensional impact of smaller feature size
- Ingenuity, innovation in feature design made this possible:
 - For example, building structures/transistors vertically, in 3-D
 - Using additional layers, in 3-D, to interconnect devices, instead of using up 2-D real estate to wire things together
- What happened:
 - In memory chips (DRAMs), density historically increased by about 2.9x (> 2X) with each new technology node

Result:

- New tech node every 3 years
- + historical additional ingenuity (2.9x density increase at new tech node instead of 2x)
- → density increases at 43% per year
- \circ \rightarrow cost decline of -30% per year
- approximate long run average rate of decline for both DRAM and microprocessor prices in 1975-95 period

Impact of 2 Year Technology Cycle (R&D Coordination) on Cost

- Now tech node every 2 years
- Maintain historical additional ingenuity (2.9x density increase at new tech node instead of 2x)
- \circ \rightarrow density now increases at 70% per year
- → cost decline of -41% per year
- Big increase in rate of decline in price, but still less than what measured in late 1990s (60%+ annual decline in prices in late 1960s)
- So let's look at other candidate explanations (beyond manufacturing cost decline) for the rest of the story

First, Analysis of Impact of Different Attributes of Improvement in Microprocessors on Price

- Constructed "hedonic" price indexes for Intel desktop microprocessors
 - Used detailed Intel price sheet data
 - Estimated over one year time periods
 - Price-characteristics relationship allowed to vary over time
 - Linked using common month in both periods
- Used regression analysis to links prices of microprocessors to measured characteristics
- Would expect other methods (price indexes) of constructing quality-adjusted prices to somewhat underestimate true decline in price
- Covered period 6/95-9/05
- Very detailed microprocessor characteristics
 - Processor clock speeds, bus speeds, L1, L2, L3 cache sizes, chip archtecture (Pentium, Celeron, P2, P3, P4), Instruction set features, voltage levels

Hedonic Price Index for Intel Desktop **Processors**

Intel Desktop Processor Price

Example of Hedonic Regression Output

Dependent Variable: lp

Number	of	Observations	Read	484
Number	of	Observations	Used	484

Analysis of Variance

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total		25 458 483	306.69959 10.99687 317.69647	12.26798 0.02401	510.94	<.0001
	Root MSE Dependent M	lean	0.15495 5.21507	R-Square Adj R-Sq	0.9654 0.9635	

Parameter Estimates

2.97127

Coeff Var

			Parameter	Standard		
Variable	Label	DF	Estimate	Error	t Value	Pr > t
Intercept	Intercept	1	-16.77791	1.50892	-11.12	<.0001
lproc		1	3.25134	0.09312	34.91	<.0001
p4	p4	1	0.18154	0.04648	3.91	0.0001
llc16cel		1	-0.38673	0.12118	-3.19	0.0015
11c16p		1	-0.20458	0.13991	-1.46	0.1444
L2C2000		1	0.11858	0.06139	1.93	0.0540
L3C2000		1	1.33076	0.05024	26.49	<.0001
B800		1	-0.01174	0.04525	-0.26	0.7955
B1066		1	0.44815	0.07751	5.78	<.0001
hvolt	hvolt	1	-0.90918	1.09809	-0.83	0.4081
lvolt	lvolt	1	-1.89787	0.64063	-2.96	0.0032
HT	HT	1	0.18346	0.04849	3.78	0.0002
LGA775	LGA775	1	0.01850	0.02095	0.88	0.3777
dualcore	dualcore	1	1.06352	0.08021	13.26	<.0001
EIST	EIST	1	0.08066	0.05672	1.42	0.1556
EM64T	EM64T	1	0.03341	0.03791	0.88	0.3785
D200406		1	0.00968	0.03208	0.30	0.7630
D200408		1	-0.11177	0.03764	-2.97	0.0031
D200410		1	-0.12228	0.03199	-3.82	0.0002
D200412		1	-0.13788	0.03674	-3.75	0.0002
D200502		1	-0.18498	0.03749	-4.93	<.0001
D200503		1	-0.17653	0.03665	-4.82	<.0001
D200505		1	-0.17474	0.03634	-4.81	<.0001
D200506		1	-0.18078	0.03792	-4.77	<.0001
D200508		1	-0.27205	0.04038	-6.74	<.0001
D200509		1	-0.26966	0.04004	-6.74	<.0001

Results Consistent with Other Non-Hedonic Studies

Aizcorbe, Cor	rado, Doms
Matched Mode	el
Fisher Ideal P	rice Index
Q2/93-Q2/94	-28.27%
Q2/94-Q2/95	-57.39%
Q2/95-Q2/96	-66.22%
Q2/96-Q2/97	-48.54%
Q2/97-Q2/98	-71.82%
Q2/98-Q2/99	-68.06%

Flamm Hedonic Annualized Rates

May96-May97	-55.52%
May97-May98	-69.27%
May98-May99	-73.77%
May99-Apr00	-65.02%
Apr00-May01	-74.56%
May01-May02	-45.46%
May02-Apr03	-58.80%
Apr03-May04	-40.07%
May04-May05	-16.03%

Hedonic Analysis Suggests Large Big Role for Processor Speed in Price

- Elasticity in range of 2 to 3 in regressions for all years from 1996 on
- 10% increase in processor speed associated with 20-30% increase in price, at any moment in time

Acceleration in technology nodes also led to acceleration in processor speed improvement!

- New technology node historically led to discontinuous increase in processor speed
- Byproduct of smaller feature sizes is shorter distances between features, potentially faster chips
 - Design innovation needed to make use of greater switching speeds
- Another benefit of roadmap-led acceleration in nodes beyond merely reducing manufacturing cost

Crisis in Microprocessors?

- Hit "brick wall" related to power and heat dissipation in 2004-2005
- Processor speed no longer increasing significantly
- Processor speed now increasing very slowly if at all
- Processor speed slowdown in 2003-04, halt in 2004-05 coincide with big declines in rate of price performance improvement
- Feature proliferation going on in new microprocessors, hedonics suggest relative small enhancement to value of new processors
- Slowdown in new node intro at Intel may also explain slowdown in price decline rate

10000 1000 • geo mean speed, all nodes 100 mu per mu per

geo mean speed, all nodes

New Tech Node Introduction at Intel (Using Intro of 1st Commercial Product)

Year	Month	-	Tech Node (nm)	Years since last
				Node Introduction
19)74	4	6000	
19	976	3	3000	
19	982	2	1500	5.92
19	989	4	1000	7.17
19	91	6	800	2.17
19	94	3	600	2.75
19	95	3	350	1.00
19	97	9	250	2.50
19	99	6	180	1.75
20	001	1	130	1.58
20)04	2	90	3.08

Big Trouble?

- Rapid improvement in price performance for processors and memory→ rapid improvement in PC price-performance
- Rapid improvement in PC priceperformance → widespread use of IT, productivity improvements in entire economy
- Likely to significantly reduce incentive to purchase new computers
- Slowdown in purchases of PCs, application of IT, likely to have significant ripple effects throughout global economy

Microprocessor Industry Response

- Dual and multi-core processors
 - Unlike faster processors (with higher clock rates), do nothing to improve performance of applications written as single threads
 - As opposed to running multiple instances of a single app on a server
 - Rewriting existing applications to "parallelize" and divide work into parallel threads difficult and expensive—lesson from supercomputer industry
 - But it is possible to do it with appropriate investment another lesson from recent history of supercomputer industry
 - Suggests that increased investments in high end computing ultimately likely to be generating new wave of "spillover" benefits to IT users—and broader economy
- New feature proliferation
 - Verdict out on how worthwhile

Feature proliferation

Processor Number Feature Table

Туре	Intel® Brand or Processor Family	Processor Name	Architecture	Cache (MBKB)	Clock Speed (GHzIMHz)	Front Side Bue (MHz)	Dual-core	Intel® Virtuelize fon Technology ²	Hyper- Threeding Technology"	Entire no ed Intel 8p eed 8tep 6 T eo hanolog y	ENG 41*	Ex ecuto Dis able"
	Intel® Pentium® Processor Extreme Edition	intel® Pentium® Processor Extreme Edition 840	90nm, LGA775	2 x 1 MB L2 Cache	3.20 GHz	800 MHz	Yes	No	Yes	No	Yes	Yes
	Intel® Pentium® D processor	Intel® Pentium® D processor 840	90nm, LGA775	2 x 1 MB L2 Cache	3.20 GHz	800 MHz	Yes	No	No	Yes	Yes	Yes
	Intel® Pentium® D processor	Intel® Pentium® D processor 830	90nm, LGA775	2 x 1 MB L2 Cache	3 GHz	800 MHz	Yes	No	No	Yes	Yes	Yes
	Intel® Pentium® D processor	Intel® Pentium® D processor 820	90nm, LGA775	2 x 1 MB L2 Cache	2.80 GHz	300 MHz	Yes	No	No	No	Yes	Yes
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 672 supporting Hyper-Threading Technology	90nm, LGA775	2 MB L2 Ceche	3.80 GHz	800 MHz	No	Yes	Yes	Yes	Yes	Yes
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 670 supporting Hyper-Threading Technology	90nm, LGA775	2 MB L2 Ceche	3.80 GHz	800 MHz	No	No	Yes	Yes	Yes	Yes
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 652 supporting Hyper-Threading Technology	90nm, LGA775	2 MB L2 Ceche	3.60 GHz	800 MHz	No	Yes	Yes	Yes	Yes	Yes
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 650 supporting Hyper-Threading Technology	90nm, LGA775	2 MB L2 Cache	3.60 GHz	800 MHz	No	No	Yes	Yes	Yes	Yes
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 650 supporting Hyper-Threading Technology	90nm, LGA775	2 MB L2 Ceche	3.40 GHz	800 MHz	No	No	Yes	Yes	Yes	Yes
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 640 supporting Hyper-Threading Technology	90nm, LGA775	2 MB L2 Cache	3.20 GHz	800 MHz	No	No	Yes	Yes	Yes	Yes
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 630 supporting Hyper-Threading Technology	90nm, LGA775	2 MB L2 Ceche	3 GHz	800 MHz	No	No	Yes	Yes	Yes	Yes
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 571 supporting Hyper-Threading Technology	90nm, LGA775	1 MB L2 Ceche	3.80 GHz	800 MHz	No	No	Yes	No	Yes	Yes
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 570J supporting Hyper-Threading Technology	90nm, LGA775	1 MB L2 Ceche	3.80 GHz	800 MHz	No	No	Yes	No	No	Yes
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 561 supporting Hyper-Threading Technology	90nm, LGA775	1 MB L2 Ceche	3.60 GHz	800 MHz	No	No	Yes	No	Yes	Yes
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 550J supporting Hyper-Threading Technology	90nm, LGA775	1 MB L2 Ceche	3.60 GHz	800 MHz	No	No	Yes	No	No	Yes
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 550 supporting Hyper-Threading Technology	90nm, LGA775	1 MB L2 Code	3.60 GHz	800 MHz	No	No	Yes	No	No	No
	Intel® Pentium® 4 processor	Intel® Pentum® 4 processor 551 supporting Hyper-Threading Technology	90nm, LGA775	1 MB L2 Cache	3.40 GHz	800 MHz	No	No	Yes	No	Yes	Yes
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 550J supporting Hyper-Threading Technology	90nm, LGA775	1 MB L2 Code	3.40 GHz	800 MHz	No	No	Yes	No	No	Yes
	Intel® Pentium® 4 processor	Intel® Pentum® 4 processor 550 supporting Hyper-Threading Technology	90nm, LGA775	1 MB L2 Cache	3.40 GHz	800 MHz	No	No	Yes	No	No	No
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 541 supporting Hyper-Threading Technology	90nm, LGA775	1 MB L2 Cache	3.20 GHz	800 MHz	No	No	Yes	No	Yes	Yes
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 540J supporting Hyper-Threading Technology	90nm, LGA775	1 MB L2 Cache	3.20 GHz	800 MHz	No	No	Yes	No	No	Yes
	Intel® Pentium® 4 processor	Intel® Pentum® 4 processor 540 supporting Hyper-Threading Technology	90nm, LGA775	1 MB L2 Cache	3.20 GHz	800 MHz	No	No	Yes	No	No	No
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 531 supporting Hyper-Threading Technology	90nm, LGA775	1 MB L2 Cache	3 GHz	800 MHz	No	No	Yes	No	Yes	Yes
	Intel® Pentium® 4 processor	Intel® Pentum® 4 processor 530J supporting Hyper-Threading Technology	90nm, LGA775	1 MB L2 Cache	3 GHz	800 MHz	No	No	Yes	No	No	Yes
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 530 supporting Hyper-Threading Technology	90nm, LGA775	1 MB L2 Code	3 GHz	800 MHz	No	No	Yes	No	No	No
	Intel® Pentium® 4 processor	Intel® Pentum® 4 processor 521 supporting Hyper-Threading Technology	90nm, LGA775	1 MB L2 Cache	2.80 GHz	800 MHz	No	No	Yes	No	Yes	Yes
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 520J supporting Hyper-Threading Technology	90nm, LGA775	1 MB L2 Cadhe	2.80 GHz	800 MHz	No	No	Yes	No	No	Yes
Deekten	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 520 supporting Hyper-Threading Technology	90nm, LGA775	1 MB L2 Cache	2.80 GHz	800 MHz	No	No	Yes	No	No	No
Passub	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 519K	90nm, LGA775	1 MB L2 Code	3.06 GHz	533 MHz	No	No	No	No	Yes	Yes
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 519J	90nm, LGA775	1 MB L2 Cache	3.06 GHz	533 MHz	No	No	No	No	No	Yes
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 518	90nm, LGA775	1 MB L2 Cache	2.93 OHz	533 MHz	No	No	No	No	Yes	Yes
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 515J	90nm, LGA775	1 MB L2 Cache	2.93 GHz	533 MHz	No	No	No	No	No	Yes
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 515	90nm, LGA775	1 MB L2 Cache	2.93 GHz	533 MHz	No	No	No	No	No	No
	Intel® Pendum® 4 processor	Intel® Pentium® 4 processor 511	90nm, LGA775	1 MB L2 Cadhe	2.80GHz	533 MHz	No	No	No	No	Yes	Yes
	Intel® Pentium® 4 processor	Intel® Pentium® 4 processor 505J	90nm, LGA775	1 MB L2 Cadhe	2.68 GHz	533 MHz	No	No	No	No	No	Yes

Conclusions

- R&D coordination effort started with SEMATECH and continuing through ISTR appears to have created significant benefits over last decade
- Technology node acceleration has big impact on manufacturing costs, quite apart from any other benefits
- Examination of microprocessors suggest additional important benefits
- Microprocessor analysis also suggests new technical barriers seem to have at least temporarily slowed down creation of additional benefits
 - Significantly slowing declines in quality-adjusted microprocessor prices
- Investment in advancing software technology may be needed to capitalize on continuing advance in semiconductor manufacturing
- Implication- in long run, supercomputer software R&D investment is likely to be as or more economically important than new supercomputer hardware– where \$ are now going