Study for Evaluating the Achievements of the S&T Basic Plans in Japan: Qualitative Analysis of R&D Output

NISTEP International Workshop on Comprehensive Review of Japan's Science and Technology Basic Plans Tokyo, Japan September 13 - 14, 2004

Hiroyuki TOMIZAWA National Institute of Science and Technology Policy (NISTEP)

Basic idea

2

- Input-Output model
 - R&D output as an indicator of performance
 - Oversimplification?
- Structural analysis
 - To illustrate the influence of the S&T Basic Plans on Japanese R&D system
 - Analysis of "structural data"
 - year, sector (type of organization),
 citation frequency rank, research field, ...

3

 How can we measure "additionality" of the S&T Basic Plans?

- Premature for Output Analysis?
 - 1st S&T Basic Plan: 1996-2000
 - 2nd S&T Basic Plan: 2001-2005

Database

Scientific Papers

SCI (Science Citation Index)

National Science Indicators
 Macro Analysis

SCI CD-ROM
 Structural Analysis

Web of Science, etc.
 Impact Analysis

Patent

 CHI International Technology Indicators

WIPO and Patent Office

US Patent, Citation, Science Linkage Patent Applications

Trends of Japan's scientific papers

Share of Scientific Papers

Data: Thomson ISI, National Science Indicators 1981-2002.

Scientific paper share and times cited share

6

Data: Thomson ISI, National Science Indicators 1981-2002.

Number of scientific papers by citation frequency rank

7

Note: Citation frequency is calculated based on SCI up to 2003. Data: Thomson ISI, Science Citation Index (CD-ROM version).

Number of scientific papers by citation frequency rank

8

Note: Citation frequency is calculated based on SCI up to 2003. Data: Thomson ISI, Science Citation Index (CD-ROM version).

Japan's share of scientific papers by citation frequency rank and by sector

2001

Top 10% of the most frequently cited

1996

1991

Note: Inter-sectoral co-authored papers are counted in fractional base.

Data: Thomson ISI, Science Citation Index (CD-ROM version).

1991

1996

2001

Co-authorship structure of Japan's scientific papers

Data: Thomson ISI, Science Citation Index (CD-ROM version).

Trends of the inter-sectoral co-authorship

Business enterprise sector with other sectors

60% 50% Ratio of coauthored papers Univ. & Coll. - - Foreign ── Natl Res Inst. Semi-Public Hospitals 10% 0% 1991 1996 2001

University & college sector with other sectors

Data: Thomson ISI, Science Citation Index (CD-ROM version).

Scientific Papers and Patents by Priority Area

Data: Thomson ISI, National Science Indicators 1981-2002.

CHI Research Inc., International Technology Indicators 1980-2002.

Sceintific Publication Growth: by Growth Pattern of the World and Japan

High	4
world	
in the	
Growth	

High	Japan' performance
------	--------------------

Low

	A (strong)	B (ordinary)	C (rather weak)	D (weak)
1.5 -	 Materials Science & Engineering Computer Science & Engineering Cell & Developmental Biology Oncology AI, Robotics & Automatic Control 	Environment / Ecology	Engineering MathematicsInformation Technology & Communications Systems	■Mechanical Engineering
1.2 - 1.5	 Physics Applied Physics / Condensed Matter / Materials Science Medical Research, Organs & Systems Molecular Biology & Genetics 	Organic Chemistry / Polymer Science	 Electrical & Electronics Engineering Chemical Engineering Biotechnology & Applied Microbiology 	Chemistry & AnalysisFood Science / Nutrition
1.0 -1.2	ImmunologyPharmacology & ToxicologyAnimal & Plant Sciences	■Mathematics	Biochemistry & BiophysicsMedical Research, General TopicsNuclear Engineering	ChemistryAgricultural Chemistry
-1.0	Metallurgy		General & Internal MedicineAgriculture / AgronomyPhysiology	Experimental Biology

Shares of U.S. Patents and their Citations among Japan, U.S. and EU (1980-2000)

Data: CHI Research Inc. "International Technology Indicators 1980-2002"

Trends in Patent Applications in the World

Number of patent applications

(10 thousand)

Patents application shares

Data: WIPO, Industry Property Statistics

Data: CHI Research Inc. "International Technology Indicators 1980-2002"

Analysis on Linkage between U.S. Patents and Scientific Papers

Summary and implications

- Japan's productivity growth in science
 - End of "high-growth era"?
 - S&T Basic Plans support productivity growth?
- Quality of scientific research may be improved
 - Increase citation frequency
 - To find excellent institutions
- Can we analyze effects of policies ?
 - Fostering human resources, Industry-academia-government cooperation, Increase R&D funding, etc.