University-Industry Partnerships in Japan

Presented at
Symposium on “21st Century Innovation System for Japan and the United States”
Tokyo, January 10-11, 2006

Prof. Masayuki KONDO
Yokohama National University/
National Institute of Science and Technology Policy (NISTEP)
Outline of Presentation

- University-Industry Partnerships in a National Innovation System

- University-Industry Partnerships
 - Historical Development in Japan
 - The First Engineering Department of a University in the World
 -- Department of Engineering, Tokyo University --
 - A Research Institute that Lead a Large Industrial Group
 -- RIKEN (Institute of Physical and Chemical Research) --
 - Recent Movements in Japan
 - Joint Research
 - Technology Licensing
 - Academic Spin-offs -- From “Collaboration” to “Cross-over” --

- Concluding Remarks
University-Industry Partnerships in a National Innovation System
Role Charts
(unit: %)

Universities

Japan (2003)
B A D
(14.5) (23.0) (62.4)
46.5 20.4 1.8

USA (2003)
B A D
(19.1) (23.9) (57.1)
62.0 16.1 2.0

Public Research Institutes

19.6

12.2 5.7

8.2 13.0 7.2

Industry

31.4

64.1 91.2

15.5 64.1 89.1
Question:
How can we utilize S&T for society, economy and business in a national innovation system?

Public Sector
Universities
Public Research Institutes
Accumulated S&T Knowledge
S&T Potential Personnel Facilities

Joint Knowledge Creation
Transfer
Starting up

Private Sector
People
Industry
Society
Economy
Business

M.Kondo
Science vs. Technology

Knowledge

Wealth

SCIENCE

Knowledge

Universities

Knowledge

Industry

Wealth

Utility

Knowledge

Wealth

TECHNOLOGY

Knowledge

M.Kondo
Science-Based Technology

Note. The author modified the diagram of Stokes (1997).
University-Industry Partnerships
Historical Development in Japan
The First Engineering Department of a University in the World

- Imperial College of Engineering was established under Ministry of Engineering in 1873.

- This became College of Engineering of Imperial University (Current Tokyo University) in 1886.
Education at Imperial College of Engineering

- Dr. Henry Dyer from Scotland was the President from 1873-1882.
- Combination of Theories and Practices
 - School 2 years
 - College 2 years
 - Practice 2 years
- Graduates worked in the industry.
- Japanese universities were application-oriented in the beginning.
A Research Institute that Lead a Large Industrial Group
- RIKEN (Institute of Physical and Chemical Research) -

- Academic Achievement
 - 2 Nobel Prize Laureates:
 - Dr. Yukawa and Dr. Tomonaga
 - (Dr. Fukui was also related.)
 - 1,686 papers in Japanese and 1,072 papers in foreign languages from 1922 to 1941

- Industrial Achievement
 - RIKEN registered 0.7 percent of all patents (848 patents) registered in Japan during the period from 1918 to 1944.
 - The RIKEN Industrial Group consisted of 63 companies at its peak. One of them is the root of Ricoh.
Establishment of RIKEN

Dr. Jokichi TAKAMINE, a scientist and millionaire living in the United States, pointed out the need for a National Science Research Institute in 1913.

Prime Minister Shigenobu OKUMA convened the Council to Promote Establishment of RIKEN in 1916.

It was established as a nonprofit foundation in 1917 and was abolished in 1948.

Some principal researchers were joint appointment of university professors.
Revenue of RIKEN

<table>
<thead>
<tr>
<th>year</th>
<th>1927</th>
<th>1939</th>
<th>1940</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>thousand yen</td>
<td>%</td>
<td>thousand yen</td>
</tr>
<tr>
<td>R&D</td>
<td>13</td>
<td>2.0</td>
<td>264</td>
</tr>
<tr>
<td>patent royalty</td>
<td>0</td>
<td>0.0</td>
<td>1793</td>
</tr>
<tr>
<td>production work</td>
<td>206</td>
<td>31.2</td>
<td>53</td>
</tr>
<tr>
<td>stock operation</td>
<td>37</td>
<td>5.6</td>
<td>740</td>
</tr>
<tr>
<td>rent</td>
<td>6</td>
<td>0.9</td>
<td>1</td>
</tr>
<tr>
<td>interests and dividends</td>
<td>143</td>
<td>21.7</td>
<td>793</td>
</tr>
<tr>
<td>subsidies</td>
<td>250</td>
<td>37.9</td>
<td>0</td>
</tr>
<tr>
<td>miscellaneous</td>
<td>4</td>
<td>0.6</td>
<td>61</td>
</tr>
<tr>
<td>total</td>
<td>660</td>
<td>100.0</td>
<td>3705</td>
</tr>
</tbody>
</table>

Unique Management Concepts of RIKEN Industrial Group

- Science Capital Industry (Scientific knowledge is the key.),

- Intellectual Management (eg. mechanical engineering for chemical plants),

- Combinatory Management (the use of byproducts for other processes in the same premise) and

- Rural Industrialization with Single-Function Machines
University-Industry Partnerships
Recent Movements in Japan
Forms of University-Industry Partnership

- Joint Knowledge Creation
 - Joint research
 - Contract research
 - (Donation)
 - Comprehensive collaboration agreement

- Knowledge Transfer
 - Journal papers and books
 - Conference presentations
 - Via students
 - Graduating students
 - Internship in companies
 - Students sent by companies
 - Consultancy
 - Licensing

- Knowledge-based Starting Up
 - Academic spin-offs

 2. Facility and equipment usage is another form of partnership.
Policies to Promote University-Industry Partnerships in Japan

Joint Knowledge Creation
- Joint Research Centers
- Research Grants for University-Industry Collaborative Research

Knowledge Transfer
- Technology Licensing Organizations (TLOs)
- University IPR Management Centers

Knowledge-based Starting Up
- Venturing Business Laboratories (VBLs)
- Incubation Centers
- Relaxation of the regulation on side jobs

Overall
- Changing National Universities into National University Agencies
Joint Research Centers at National University

Number of center for joint research

Pre-First Plan Period → First Plan Period ← Second Plan Period

Cumulative total of centers

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Centers</td>
<td>3</td>
<td>8</td>
<td>13</td>
<td>18</td>
<td>23</td>
<td>28</td>
<td>33</td>
<td>38</td>
<td>43</td>
<td>47</td>
<td>49</td>
<td>52</td>
<td>53</td>
<td>56</td>
<td>61</td>
<td>62</td>
</tr>
<tr>
<td>(Number established annually)</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: MEXT Website
Offices for University-Industry Cooperation

Data: Based on the responses to “Questionnaire Survey on Achievements of S&T Basic Plan (survey on policies related to industry-academia-government cooperation and regional innovation),” (distributed in June 2004)

Source: NISTEP

M.Kondo
University – Industry Joint Research

Data: The data for national universities is calculated, using the source from MEXT HP and its “University-Industry Research Cooperation: A Status Report, 1983-2001,” March 2003. Others are based on the result from the questionnaires made by NISTEP and Mitsubishi Research Institute, Inc. (distributed in 2004).

Source: NISTEP
Trends of Joint Research at Yokohama National University
- Deepening and Diversification -

- Deepening
 - Number of joint research projects per company increased.
 - Joint research projects with large budget increased.
 - Joint research in the same prefecture increased in terms of number and total budget.

- Diversification
 - The budget difference between the largest and the smallest became wider.
 - Joint research projects with new companies including MNCs increased.
 - The ratio of university researchers conducting joint research with companies over all university researchers increased.

Coauthorship between Company Researchers and University Researchers

Source: (Japan)Prepared by NISTEP using the CD-ROM version of SCI

Source: NISREP REPORT No.74 (2004)
Science Linkage in U.S. Patents

All Areas

- **Japan**
- **U.S.**
- **EU**

Science linkage is the number of cited scientific papers in the U.S. patent examination reports per registered patent. It indicates a frequency of the use of scientific knowledge among patents.

Source: NISTEP

M.Kondo
University Licensing (Japan-US Comparison)

<table>
<thead>
<tr>
<th></th>
<th>Japan</th>
<th>US</th>
<th>Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D</td>
<td>3.3 trillion yen (2002)</td>
<td>5.4 trillion yen (2002)</td>
<td>1.6</td>
</tr>
<tr>
<td>License Income</td>
<td>0.55 billion yen (2003)</td>
<td>145 billion yen (2002)</td>
<td>264</td>
</tr>
</tbody>
</table>

Source: NISTEP
Academic Spin-Offs
Stage-by-Stage Penetration

An Enterprise to Overseas Market

Exports → Licensing → FDI

A Professor (or a Researcher) to Market/Society

Consulting
Students
Joint Research

→ Licensing

→ Start-up

Academic Spin-Offs in Japan

Academic Spin-Offs

*Accumulated total is 916 as of August of 2004.

Academic Spin-Offs by Areas

*: Breakdown of 916 companies as of August 2004.

Data: Calculated by NISTEP based on “University-Spin-Off Survey FY2004” by Tsukuba University and Yokohama National University.

Source: NISTEP
Newspaper Articles on “University Spin-offs” in Japan

Note. The number of articles in four newspapers published by NIKKEI.
Cross-over among Industry, Universities and Public Research Institutes

M.Kondo
Profiles of Academic Spin-off Founders

Table: Profiles of Founders

<table>
<thead>
<tr>
<th>Founders</th>
<th>Ratios (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty</td>
<td>69.7</td>
</tr>
<tr>
<td>of which professors</td>
<td>44.2</td>
</tr>
<tr>
<td>Students</td>
<td>22.9</td>
</tr>
<tr>
<td>of which doctor course students</td>
<td>11.2</td>
</tr>
<tr>
<td>of which master course students</td>
<td>7.5</td>
</tr>
<tr>
<td>of which undergraduate students</td>
<td>3.0</td>
</tr>
<tr>
<td>Researchers/technicians</td>
<td>7.5</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Source: FY2004 Survey.
Future Business of Academic Spin-offs

Future Business

<table>
<thead>
<tr>
<th>Intended Future Business</th>
<th>Ratios (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Licensing out</td>
<td>25.7</td>
</tr>
<tr>
<td>Product sales using OEM</td>
<td>22.4</td>
</tr>
<tr>
<td>Product manufacturing and sales</td>
<td>16.1</td>
</tr>
<tr>
<td>Contract research and design</td>
<td>14.6</td>
</tr>
<tr>
<td>Sales of developed patents</td>
<td>11.5</td>
</tr>
<tr>
<td>Others</td>
<td>9.6</td>
</tr>
</tbody>
</table>

Source: Year 2004 Survey.
Concluding Remarks
Some Reservations

- A university needs to keep its identity.
- Rules to avoid conflicts of interests need to be established.
- Practices to handle research tool patents in academic research need to be established.
The Roles of University-Industry Partnerships in Japan

At the national level

- Narrowing the gap between high S&T potential and low industrial performance to strengthen industrial competitiveness

- Creating internationally competitive universities

At the regional level

- Creating regional innovation systems
 - University-industry collaborative R&D and university spin-offs are promoted in regional innovation policies.
 - Knowledge Cluster Initiative
 - Industrial Cluster Program